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Abstract— Robot learning has produced remarkably effective
“black-box” controllers for complex tasks such as dynamic
locomotion on humanoids. Yet ensuring dynamic safety, i.e.,
constraint satisfaction, remains challenging for such policies.
Reinforcement learning (RL) embeds constraints heuristically
through reward engineering, and adding or modifying con-
straints requires retraining. Model-based approaches, like con-
trol barrier functions (CBFs), enable runtime constraint spec-
ification with formal guarantees but require accurate dynam-
ics models. This paper presents SHIELD, a layered safety
framework that bridges this gap by: (1) training a genera-
tive, stochastic dynamics residual model using real-world data
from hardware rollouts of the nominal controller, capturing
system behavior and uncertainties; and (2) adding a safety
layer on top of the nominal (learned locomotion) controller
that leverages this model via a stochastic discrete-time CBF
formulation enforcing safety constraints in probability. The
result is a minimally-invasive safety layer that can be added
to the existing autonomy stack to give probabilistic guarantees
of safety that balance risk and performance. In hardware
experiments on an Unitree G1 humanoid, SHIELD enables
safe navigation (obstacle avoidance) through varied indoor
and outdoor environments using a nominal (unknown) RL
controller and onboard perception.

I. INTRODUCTION

As learning-based controllers achieve remarkable success
in complex robotic tasks such as legged locomotion [1]-[8],
they bring with them a fundamental tension: the black-box,
data-driven nature, which enables their robust performance,
simultaneously obscures our ability to provide formal safety
guarantees or modify their constraints without expensive re-
training. As more roboticists begin to field robust controllers
trained using strategies like reinforcement learning (RL),
developing ways to flexibly and adaptively constrain their
behavior online to ensure safety (e.g., to avoid colliding
with humans in their workspace) remains an open problem.
Solving this problem is especially critical for humanoid
robots, which by their very nature are designed to interact
with humans in everyday environments.

Background. Several methods have emerged in recent
years to enable the safe deployment of learning-based
controllers. For example, conformal prediction provides a
powerful framework for developing risk-aware controllers
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Fig. 1. A humanoid robot implementing the SHIELD architecture au-
tonomously avoids collision with a human using onboard sensing. SHIELD
combines a performant underlying controller (e.g., an RL-trained locomotion
policy) with a safety layer, which modulates high-level reference signals
through a generative model of tracking error trained using real-world
trajectory data. This architecture allows safety constraints (like collision
avoidance) to be specified and enforced at runtime, with rigorous proba-
bilistic guarantees, even on high-dimensional systems like humanoid robots
with complex or “black-box” control policies.
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with quantile-based robustification [9], [10]. However, this
approach often becomes computationally intractable as the
number of samples increases. Alternatively, “backup”’-style
approaches employ a dual-controller strategy: a “performant”
controller during normal operation and a separate safe con-
troller that engages in high-risk scenarios, e.g., [11] proposed
using a learned safe controller, which inherits the same
unpredictability as the “performant” controller when oper-
ating outside its training distribution. The safe controller can
alternatively be designed using optimal control techniques
like backward reachability via the Hamilton-Jacobi-Bellman
(HJB) equations [12], but these methods rely heavily on
accurate dynamics models and often prove computationally
prohibitive [13] for complex systems such as bipedal robots.
The above methods can be broadly framed under the notion
of data-driven safety filters [14], i.e., methods that modulate
nominal signals to ensure safety in a data-driven context.

The concept of a safety filter originated with control



Fig. 2. SHIELD enables real-world pedestrian avoidance with a humanoid robot, using a “general-purpose” RL policy. Top: Our robot safely walks among
pedestrians using SHIELD’s stochastic safety framework. Botfom: The robot relies solely on onboard perception to detect and avoid obstacles. Experimental
video of this experiment can be found at: https://vimeo.com/1061676063,

barrier functions (CBFs) [15], [16]. This method takes a
nominal controller (potentially learning-based) and filters it
via the CBF condition to ensure safety framed as forward
set invariance. This approach has proven effective on a wide-
variety of robotic systems, including quadrupedal and bipedal
robots [17], [18]. Yet this approach assumes an accurate
model of the system dynamics and environment—this is not
available for complex humanoids operating in unstructured
environments. To address this, recent work has leveraged
reduced-order models in the synthesis of CBF-based safety
filters [19], [20], but this requires the underlying assumption
of accurate tracking of reference signals.

Contributions. This paper introduces SHIELD, a novel
paradigm for guaranteeing safety in robotic systems that
bridges the gap between data-driven and model-based safety
methods. SHIELD is specifically designed for systems with
complex, robust, but ultimately stochastic low-level con-
trollers, such as RL policies used by humanoid robots for lo-
comotion. Unlike traditional safety filters, SHIELD functions
as a safety layer that sits ”above” the nominal learning-based
controller in the autonomy stack (cf. Fig. [T), modulating the
reference signal rather than directly filtering control outputs.
SHIELD is constructed through a three-step process:

Step 1: Constraint specification. The user specifies a safety
constraint on a subset of the robot states (e.g. the
pose of the robot torso) mathematically, with positive
values corresponding to constraint satisfaction. The low-
level policy does not need to be trained to satisfy
this constraint but can instead be designed to track
general reference commands provided to the reduced-
order model (as is typical for RL [2], [S]).

Step 2: Dynamics residual learning. The user collects real-
world data of the low-level policy being excuted and
trains a conditional variational autoencoder (CVAE)
to model the difference between the desired motion
of the reduced-order model, and closed-loop system’s
real-world tracking of these commands. The result is
improved reference signal tracking performance.

Step 3: Safety-aware reference generation. The learned
residual distribution from the CVAE is used to compute
“minimally-invasive” modifications to the reference
command that closely track the desired motion of

the reduced-order model while satisfying a stochastic
discrete-time control barrier function (S-DTCBF) [21],
[22] constraint. The result is a formal guarantee of
safety in probability: the probability that the system
state leaves a specified safe set in a finite specified
horizon.

Crucially, in contrast to prior work [23], SHIELD uses
the CVAE to both improve the qualitative performance (by
achieving better tracking) and thereby, through the layered
implementation, enforce user-specified safety constraints.
The result is guarantees of safety in probability. We also
provide a computationally tractable formulation of the S-
DTCBF constraint for obstacle avoidance that is amenable
to online computation on embedded robot hardware.

We validate our theoretical framework by implementing
our approach on an Unitree G1 Humanoid robot and conduct-
ing comprehensive experiments. We first model the robot as
a planar single integrator system, train an RL policy to track
reference linear and yaw rates, and define obstacle avoidance
constraints for these states using onboard perception (Step
1). We then train a CVAE to model these disturbances using
obstacle-free locomotion data (Step 2). Online, we deploy
the controller using a stochastic DTCBF with the generative
dynamics residual (Step 3), which modulates the inputs to
the RL walking policy. In controlled experiments, SHIELD
consistently outperforms traditional DTCBF methods, as the
robot tracks velocity commands while avoiding obstacles
using only onboard perception. Finally, to demonstrate real-
world applicability, we successfully deploy our system in
unstructured outdoor environments (see Fig. [Z) where the
robot navigates safely around humans.

II. BACKGROUND

In this work we consider robots that can be modeled as
discrete time dynamical systems of the form:

Sk1 = B(Sk, ak). (D

where s, € R”s is the state of the system and a € R"e
is the system input. This may be the high-dimensional
representation of the system where s includes global pose,
joint angles, joint angular velocities, etc. and a may be joint
torques, voltages, etc. For this complex system, we assume
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that we have some controller 7 : R™ x R"» — R™e that
takes the current system state s and user commands u to
produce full-order system inputs a. Using this controller
yields:

Sk+1 = P(sk, w(sk, ug)). 2)

For navigation purposes, we consider a reduced-order
representation of the system x € R™* where n, < ns and
x = p(s) for some projection p : R™s — R™= that projects
the full-order state s onto the reduced-order state x. Here x
may be the outputs of the system that are considered in safety
and navigation, such as its center of mass position. Similarly,
we consider the reduced-order inputs to the system.

We can then represent the discrete-time dynamics of this
reduced-order model of the system as:

X1 = P(P®(sk, 7(sk, ur))) 3)
~ F(xx) + G(x)ug + dyg 4)

where F(x)+ G (xy)uy represents a simplified model of the
system and d is the difference between the full-order model
and this reduced order model, also called the dynamics resid-
ual. To capture the complexities of the full-order dynamics
® and the controller 7, we consider d; to be a random
disturbance sampled from a distribution D(sg.0,ax.o) that
is dependent on the history of full states and from time 0
through k, denoted as s;.q and ay.o respectively.

Safety in Probability. To consider the safety of this
stochastic RL-guided system, we consider a system to be
safe as long as its state is in a user defined safe ser C C R™=.
Due to the stochasticity of our system, it may not be possible
to guarantee with complete certainty that our system will
remain in C for all time [24, Sect. IV]. Instead, we look to
bound finite-time safety probability as a metric for system
safety, as is common in the stochastic safety literature [22],

1251, 12611

Definition 1 (K -step Exit Probability). For any K € Ny and
initial condition xy € R", the K-step exit probability of the
set C for a feedback controller vy, = K(xy,) applied to the
system (3) is:

Py (K,x0) = P{xy, ¢ C for some k < K} )

Stochastic Safety Filters. To enforce a bound on this K-
step exit probability, we first define the safe set C as the
0-superlevel set of some function h : R"» — R:

C={xeR"™ | h(x) > 0}. (6)

Using this definition of safety, the field nominally considers
the classical discrete-time control barrier function (DTCBF)
inequality to enforce safety: for o € (0, 1) [28]:

h(X]H_l) Z Oéh(Xk). (DTCBF)

Given the discrete nature of our problem formulation, we focus exclusively
on safety at sample times as in [22]. We refer to [27] for an analysis of
inter-sample safety.

However, given the stochastic nature of our system, we
instead consider the following stochastic discrete-time con-
trol barrier function (S-DTCBF) inequality to enforce safety
guarantees on our system:

E[ h(xXk+1) | Fr | > ah(xk) (S-DTCBF)

where %y, = {Si,Sk_1, .-, S0, Ak, Ak_1, ---, Ap }. That is, S-
DTCBEF is the traditional DTCBF condition in expectation.

This constraint has been shown to provide bounds on the
K-step exit probability (3) in a variety of contexts [22],
[29] and is often enforced on the system in the form of the
following safety filter:

u; = argmin  ||u — Knom(?)|| 7
ucld
st. E[ h(xkt1) | Fi] > ah(xk).

Unlike standard applications of CBFs, this optimization prob-
lem may be computationally complex and non-convex. Thus,
modifications involving Jensen’s inequality and generative
modeling can be made to improve computational efficiency
for hardware applications [22], [23].

In this work, we specifically consider the probability
bounds as generated by:

Theorem 1 (Freedman’s Inequality for Stochastic Safety
[29, Thm. 3]). If, for some K € Ny, 0 > 0 and § > 0,
the following bounds on the difference between the true and
predictable update and the conditional variance hold for all
k< K:

Var(h(xkﬂ) | eg‘k) < (72 (8)
E[h(x) | Fr_1] — h(xy) <6 9)

and the dynamics are constrained as in (S-DTCBF) for some
a € (0,1), then the K-step exit probability is bounded as:

O'2K>5A2

\ (10)

CYK X,
P,(K,xq) <e Ca (

where A\ = o h(x¢)d + 02K.

To apply this theorem, we require two assumptions: first,
a bound on the safety variance as in ; second, a bound
on the difference between the true safety value h(xj) and
the expected value as in (9). The first assumption is not
very restrictive and allows for a large class of potential
functions h, dynamics, and disturbance distributions. The
second assumption is more restrictive, but generally applies
in our setting, as the worst-case falling behavior would lead
to a bounded difference between the commanded and true
reduced-order-model behavior.

III. DISTURBANCE LEARNING

While theoretical frameworks such as Freedman’s in-
equality (Thm. [I) provide powerful methods for analyz-
ing and synthesizing risk-aware controllers, their guarantees
fundamentally depend on accurate characterization of the
disturbance distribution D. Rather than assuming that this
distribution is known a priori or constrained to a simplified



parametric form (e.g., additive Gaussian noise), we propose
a data-driven approach, based on [23], that leverages deep
generative modeling to learn these distributions directly from
empirical trajectories of the system. This approach enables
us to capture complex, non-Gaussian, and state-dependent
uncertainty patterns that more faithfully represent the actual
disturbances encountered during hardware operation.

Conditional Variational Inference. To account for the
dynamics residual, we seek to train a generative model to ap-
proximate the dynamics residual distribution. To do this, we
first collect a dataset of state, command, and disturbance tu-
ples ® = {(x;,u;,d;)}¥ ;. We then train a Conditional Vari-
ation Autoencoder (CVAE) [30] on this dataset, which yields
a generative disturbance model pg(dg|X:k— N, Uk:x—n). In
contrast to previous work [23], the model is conditioned
on a context window of length N € N, to allow the
model to better capture temporal effects such as higher state
derivatives or time delays. We find that providing this context
greatly boosts modeling accuracy for a complex system like
a humanoid robot (Sec. [V). Note that the input u; here is
the unfiltered command, meaning we do not need to solve
the algebraic loop of the filtered input (TT)) being a function
of itself or its own history.

We note that any class of generative disturbance model
(e.g., diffusion [31], flow matching [32]) can be used with
our proposed safety framework (Sec. - for SHIELD
we choose to use CVAEs due to their expressivity and fast
inference time, as shown empirically in [23].

Stochastic Tracking with Learned Disturbance. SHIELD
distinguishes itself from conventional safety layers through
how it modulates control signals. While traditional ap-
proaches [16], [23], [33] operate by modifying low-level
signals (such as joint torques or raw actuation commands) to
maintain safety, SHIELD instead modulates higher-level sig-
nals, i.e., the reference commands provided to the reduced-
order model. This architecture is similar to that of a refer-
ence governor [34], which modulates reference or command
signals into the controller/plant; the key difference is we
modulate these signals with a CBF and without knowledge of
the actual controller and plant dynamics. This modification
enables the definition of safety constraints on simpler, more
semantically meaningful states, making the system both more
interpretable and manageable.

SHIELD recognizes that the ultimate objective is to
achieve the intended system behavior, meaning the system
accurately tracks the reduced-order model’s trajectory. To
derive this “best-tracking” control, we define the optimal
control as minimizing the expected difference between the
next state of the reduced-order model under the desired
command, and the next state of the actual system:

u;, = argmin E[|[Re41 — (F(xz) + G(xp)ug + di)||*[F]

ur U

where X4 is the desired next position. Assuming pseudo-
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Fig. 3. Higher o« = L(P,K = 10,h(xzg9) = 10,0 = 0.01,0) values
correspond to more conservative behavior, this increased conservatism a
consequence of a lower K-step exit probability or a higher variance.

invertibility of G(xy), the optimal u i

uz = GT(Xk)(—F(Xk) + Xp41 — E[dﬂﬁk}) (1

However, since we do not have access to the true expectation
E[dy|-%], we approximate this with the learned expectation
computed from samples generated by the CVAE:

uz = GT(Xk)<7F(Xk) + Xkg+1

—E,, [di|Xk:k—N, Wkik—n])-

This uj uses the learned disturbance distribution to select
the command which reduces the mean squared error to the
desired next state X.

Safety with Learned Disturbance. In addition to using the
learned dynamics residual to improve tracking, we can also
use it to improve safety. To do this, we select a maximum
allowable risk level P € (0,1). Given the horizon length
K € N, the initial safety value h(xg), the step-wise bound
§ from assumption (@), and the variance bound o from
assumption (8) we can solve for the « that will result in
the desired risk level bound P:

a:L(PvKa h(l’o),(s,o') (12)

In practice we approximate L : (0,1) x N x Ryg x Ryg x
Rso — (0,1) numerically due to the complexity of the
analytic solution. Evaluations of the function for different
« values for a range of P and o can be found in Fig. 3]

To apply Theorem [I] we address assumption (§) and (9)
in turn, and how they apply to our application

1) For assumption (8)), the variance bound o2 is approxi-
mated from the sampled dataset ©

2) For assumption (9), we derive a bound from our appli-
cation to bipedal robots. In this case, we can bound our
difference between the true and predicted update for
h(xy) based upon the maximum step distance which
can be measured in practice:

5= 2(h(xfomstep k) - h(xfootslep k+1)) (13)

In addition to meeting assumptions (8) and (9), we must
also enforce the inequality, which we incorporate

The derivation of this follows from the equality E[||Xx11 — (F(xx) +
Gxp)up + dp)l®|7k] = |Kppr — (Flxx) + Glxp)uy +
E[dg|-Zx))||? + E[|d||?|-Zk] — ||E[d]|Z]||. Since this is true, it suffices
to find the optimal u for ||X;11 — (F(xx) + G(x)ug + E[dg|Fx])||?

which is (TI).
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Fig. 4. SHIELD improves tracking performance by correcting learned
disturbances. After applying the SHIELD correction as shown by the blue
dashed lines, the robot’s tracking of the user’s intended velocities (shown
as a black dashed lines) improves.

as a constraint in a safety filter of the form:

(14)

u:afe = argmin Hll —u’ ”
ueld
s.t.  E[h(F(xk) + G(xg)ug + dg)|-Fx] > ah(xg)

To enforce this constraint, we need to be able to quickly
evaluate or lower bound the expectation E[h(F(xj) +
G(xx)u + di)|.Zx]. To do this for concave h functions,
we employ Jensen’s inequality as in [22] to arrive at the
following inequality:

Proposition 1 (Probabilistic Invariance with Concave Safety
Functions [22, Lem. 1]). Consider a twice-continuously
differentiable, concave function h R™ — R with
SUDy cRne [V2h(x)||2 < Amax for some Amax € R>o, and a
random variable x that takes values in R"= with E[||x]|2] <
o0 and ||cov(x)|| < oco. This function h and random variable
X satisfy:

E[h(x)] > M(E[x]) — A‘;“x tr(cov(x)). (15)

This allows us to enforce the (S-DTCBE) for concave,

continuously differentiable A indirectly by instead enforcing
the tightened constraint:

h(F(x1) + G(xp)uy + Ep, [dg[Xr0, Ur:0])

_ /\max

tr(covy, (dg|Xk:0, Uk0) > ah(xg) (16)

where we can approximate E[d|.%] and cov(dy|-%) using
the learned dynamics residual distribution pg(dg|Xx.0, Uk.0)-

In summary, SHIELD uses the learned dynamics resid-
ual distribution from the CVAE to compute two distinct
quantities: (1) an optimal input that minimizes the expected
tracking error between the true system and desired next state,
and (2) a minimal adjustment to this input that enforces
probabilistic safety constraints. We emphasize that these
components are fully modular. The tracking-optimized input
can be used independently to reduce the sim-to-real gap,
while the safety adjustment can be applied separately to
enhance real-world safety guarantees. Alternatively, both
components can be combined sequentially to simultaneously
improve tracking performance and safety assurance, provid-
ing flexibility for different application requirements.

IV. DYNAMIC OBSTACLE AVOIDANCE ON STOCHASTIC
REDUCED-ORDER MODELS

In this section, we detail our approach to improve track-
ing and safety on a bipedal robot operating under random
disturbances with a stochastic reinforcement learning-based
controller 7. In particular, we use a PPO Actor-Critic learned
controller 7rppp. This takes into account histories of proprio-
ceptive and extereoceptive states s and a commanded velocity
vector u = (v, v,,w) using an LSTM and uses those to
generate joint positions, a.

To characterize the stochasticity of this controller, we use
a CVAE to learn the distribution of the dynamics residual d
conditioned on the last foulﬂ system states and commands,
ie. (Xg:.k—3, Ug:.k—3). Specifically, we use a single integrator
system with an additive disturbance as our simplified model:

pLE p;ﬂ U;E dw
Dy = | Py + Ay Uy + A dy 17
0 %

k+1 k
——
F(xx) ug dg

G(xp) LY 1% dy
Xkf1

where p;,py, € R, 0 € [0,27), and A, > 0 represent the x
and y position, the yaw angle, and the state-update period and
where dj, is a random disturbance that models the difference
between the simplified model and the true dynamics.

Using the Stochastic Tracking method detailed in Section
leads us to the optimal tracking command:

Xk4+1 — Xk
Uadjusted = A
t

— Epy[d|xk:k—3, up:k—3]  (18)
where E,,, [d|X:k—3, Ug:k—3] is the mean disturbance learned
by the CVAE. After modifying the command velocity with
the predicted dynamics residual to improve tracking, we ap-
ply our safety filter which minimally modifies that command
to enforce our safety constraint. For application, we consider
obstacle avoidance with respect to N € N obstacles as
characterized by the signed distance function (sdf):

sdf(x) = - R;

e ]+
i€{1,...N} || | Py
where p; € R? is the planar position of obstacle i and R; > 0
is the robot radius plus the obstacle radius.

To incorporate additional obstacles and reduce chattering
oscillation that can occur when the closest obstacle switches,
we smooth the SDF collision constraint to be:

19)

hsmooth(Xk) = )\<1 - e_’YSdf(Xk)> (20)

where A > 0, v > 0 are positive constants controlling the
maximum magnitude and smoothness of safety.

Since we are only considering the closest obstacle, we
make the following concave approximation:

E(X) -\ (1 _ 6*7((P*Pr5)TerRi)) 1)

In practice, we condition on the last N = min(k,4) states and commands
for the algorithm to run at start time



Algorithm 1 SHIELD: Deployment Phase

1: Initialize k < 0,x < xg

2: Initialize P, 6,

3: while true do

4 obstacles < {pq, ..., pus}

5: hy, < max; h(x, p;), i* + arg max; h(x, p;)
6: if £ modulo K = 0 then

7 Y COVp, (d‘xk:k—N, uk:k_N)

8 a <+ L(K, hg, P,0,Y)

9

: end if
10: Get ugpg as input
11: Uadjusted <= Uemd — Epg [d|Xp:k—3, Up:k—3]
. Pk —Pobs,i*
2 e My A € Amax(p2€)
13: safe — mlnu | uadjustedH
14: s.t. h(F(x) + G(x)u) — 3e’Se > ahy,
15: Apply command uj,, Xk < Xk4+1, k< k+1

16: end while

sy Jh(x), if (p—p;) e >0
h(X)_{ E( )4+ A1 — B else

where p £ [p;,p,]7 and e; € R? with ||e;||o = 1 is the
unit direction towards the closest obstacle from the previous
timestep, i.e. (px — p;)/IlPx — pill.

In the case of a single obstacle, we provide the following
bound which will allow us to build conditions that enforce
a bound on the K —step failure probability in practice:

(22)

Theorem 2 (Single-Obstacle Avoidance with Concave Bar-
rier Functions). Consider the function h as in with
N =1 and a random variable x that takes values in R"»
with E[||x||2] < oo and ||cov(x)|| < cc. This function h and
random variable x satisfy:
Amax elcov(x)e;.
2
Please see the appendix of the extended version of this paper
for the proof [35].
This allows us to enforce the for concave,
continuously differentiable / indirectly by instead enforcing
the tightened constraint:

E[h(x)] > A(E{x) - (23)

h(F(xk) + G(xp)ug + Ep, [dg [Xp:k—3, Up:x—3]) (24)

. /\max T

€; coVp, (dp[Xp:k—3, Upin—3)e; = ah(xy)

where we can approximate E[dg|%;] and cov(dg| %)
using the learned dynamics residual distribution
po(dk|Xk:x—3, Ug:k—3). In practice, we find that the
utility of SHIELD generalizes to multiple obstacles;
however, we leave a rigorous theoretical analysis of the
nonconcave h with multiple obstacles for future work.

To determine the appropriate « to get a desired risk level
across K steps, we use the L function in (I2). To calculate
«, a desired risk level P is chosen, the current safety value

m Safety Failure Metric

= Performance Metric

1%

Safety Failure Metric: Prajlure

X

SIXe-T SUO[Y PO[OARI], 0URISI(T

1% 20% 40% 60% 80% 99%
Desired Risk Level , P

Fig. 5. The trade-off between performance and safety. As the probability of
K-step exit increases, we achieve better performance at cost of an increasing
amount of safety violation under the proposed metric.

is noted as h(xy), the worst case § is approximated as in
(13), and the covariance o is set to the maximum value
experienced in the experimental data. Furthermore, to extend
the guarantee beyond K steps, we recalculate o every K
steps. Thus, each successive K steps satisfies the bound in
Prop. [T] and they can be connected using the union bound:

P {minge o, 5 r) h(x1) < 0} < S0 P {minge i, (i h(xi) < 0}

where F' is the number of K -step intervals in the experiment.
We show the SHIELD deployment stage in Alg. [T}

V. EXPERIMENTS

We demonstrate the validity of SHIELD on a simple
simulated system and then on a Unitree G1 humanoid robot,
aiming to show the method’s adaptable conservativeness,
performance, and robustness.

Simulation. We first present a simplified simulation problem
consisting of a single integrator disturbed by a 0-mean,
multivariate student’s t-distribution with clipped tails. We
randomize the placement of obstacles and the radii of the
obstacles and the robot. The robot moves along the z-
direction with a constant commanded velocity of 0.5m/sec,
which we filter using SHIELD (T).

For all experiments, we set the discrete time difference
At = 0.01 and the scaling factors in the safety function to
be A =10, v = 0.5, K = 10, and the upper bound on the
assumption of bounded difference of (9) to be 1.

We then simulate the system over Nyj,s = 100 trials of
Ngieps = 2000 steps each and calculate the percentage of
violations Prjjure as:

Nl Il Ns!eps
2221 2521 L p)<0}
]Vmals N, steps

P)failure - (25)
and quantify performance as total distance traveled in the
commanded direction. We observe that the probability of
K-step failure is a tuning knob to encourage more risky
behavior at the cost of higher chance of collisions (though
still well below the target percentage); see Fig. [5]

Hardware Setup. The Unitree G1 humanoid robot has a
height of 1.32 meters and weighs approximately 40kg, with
23 actuated degrees of freedom. We employ an onboard
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Fig. 6. SHIELD enforces safety in collision avoidance with adaptive conservatism. The A* planner path is not necessarily safe even it does not cross the
obstacle, thus naively following the path would result in collisions or scrapes. Nominal CBF, due to not accounting for the inaccurate reduced order model,
would also result in collisions or be extremely conservative.

Jetson Orin NX for computation, a Livox Mid-360 LiDAR
for sensing the environment, and an Intel T263 to localize
the robot. Euclidean clustering [36] is applied to the LiDAR
pointcloud to locate obstacles of interest in the scene.

To test the generalization of SHIELD in deployment, we
conduct experiments with two different walking controllers:

1) built-in: the Unitree built-in controller [37]
2) custom: We train a custom RL locomotion controller in
IsaacLab [38] using standard rewards from [39].

Approximately 6 minutes of training data are collected for
each controller to train the CVAE for both the built-in and
custom controllers. We query the CVAE to update the mean
and covariance of the disturbance distribution at 0.83Hz, and
we filter the command velocity at 100Hz.

Learned Tracking. We first test the velocity tracking
capabilities of the SHIELD framework. In these experiments,
we send a pre-set sequence of velocity commands through
the framework to the controller and compare our resulting
velocities to the command sequence. We achieve noticeable
improvements in tracking as shown in Fig. 4]

Obstacle Avoidance. First, we conduct controlled experi-
ments with fixed obstacles. We define success as the robot
walking past obstacles without making contact. We model the
detected obstacles as cylinders of radius 0.3m and the robot
to have a safety margin of 0.38m from the center of mass.
To navigate, we first use A* [40] to first plan a path through
free space, we then generate nominal velocities by directing
the robot from its current position to the next node on
the path and filter the commanded velocities with SHIELD.
We present both single-obstacle and multi-obstacle cases.

In single-obstacle experiments, naively following the A*
path alone does not completely avoid obstacles due to state
tracking errors. The nominal DTCBF filter, being unaware
of the dynamics residual, either collides into the obstacle
or exhibits extreme conservative behavior with a@ = 0.99.
However, SHIELD enables the robot to completely bypass
the obstacle. We observe similar behavior in multi-obstacle
scenarios, where SHIELD is able to adjust conservativeness
online to only enforce maximum safety conditions when
needed, resulting in more dynamic behavior. The results of
these experiments can be seen in Fig. [f]

Unstructured Outdoor Environment. We also perform
experiments in unstructured outdoor environments for further
validation. In these tests, a user provides joystick inputs to
the robot for safety reasons and would either control the
robot to walk directly towards people or provide no input
and let the robot stay in place unless people encroach on its
safety boundary. These experiments can be seen in Fig. [I]
and Fig. [2] and the experimental video [41].

VI. CONCLUSION

This paper presented SHIELD: a safety layer that leverages
stochastic discrete-time control barrier functions (S-DTCBF)
to guarantee safety in probability. Importantly, this can be
added to an existing autonomy stack, wherein the dynamics
of a nominal controller can be learned as the residual
on a simplified model. SHIELD then filters the nominal
commands to produce safe inputs as they are sent to the
system via an S-DTCBF. This framework is instantiated on
a humanoid robot in the context of collision avoidance, where
it is shown to outperform a nominal safety filter in hardware



experiments on the Unitree G1 humanoid. This paper, there-
fore, demonstrates that by combining a general-purpose RL
locomotion controller with a robot-specific stochastic safety
layer, SHIELD achieves both high-performance walking and
robust safety constraint satisfaction under uncertainty on
humanoid robots.

APPENDIX
A. Proof of Theorem

Proof. Consider the convex, twi~ce differentiable function 7 :
R"™ — R defined as = —h. By second-order Taylor’s
theorem, for x, u € R™ there exists an w € (0, 1) such that:

1
n(x) =n(p) + Vn(p)"d+ 5d"V*n(c)d  (26)

where d = x — p and ¢ = wx + (1 — w)p. From the
construction of h, the Hessian of 7 is :

p(x)ere], if (p—p;) e >0

V2h(x) =
(x) 0, else.

27)
where ¢(x) £ v2xe~7((P=p1) "e1=R1) which is bounded
over the if case { x € R™ | (p — p;)Te1 >0 }, we call
this bound Apax > 0.
Here V2h(x) is a diagonalizable, positive semi-definite
matrix and when it has a non-zero eigenvalue, the associated
eigenvector is equal to e;. Therefore:

)\max
n(x) < n(p) + Vn(p)'d+ TdTelefd (28)

Next, we follow the proof of [22, Lem. 1] with p = E[x]:

Eln(x)] — n(E[x]) = /R (n(x) = n(p))p(x)dx  (29)
< /R V(p)'d+ %tr(efddTel)p(x)dx (30)
= /\r;ax tr(e] cov(x)e;) = Amax e, cov(x)e;. 31

O
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