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Abstract—Safety is essential for successful real-world deploy-
ment of robotic systems. During operation these systems must
operate safely while also prioritizing their performance goals,
ideally achieving high performance behavior simultaneously
alongside mathematically verifiable safety guarantees. In this
work we study the combination of two predominant control
techniques, model predictive control (MPC) and control barrier
function (CBF) based safety filters, both of which seek to enforce
safety constraints on the system dynamics while minimally
deviating from a performance objective. By combining the cost
function and horizon-based planning of MPC with the CBF-based
safety constraint we see both practical and theoretical benefits
in nominal operation, operation under bounded uncertainty
and operation under stochastic (and potentially unbounded)
uncertainty, that extend beyond the capabilities of either of the
individual methods. In this work we show that the combined
MPC and CBF (MPC+DCBF) controller displays favorable
safety, performance, and closed-loop feasibility properties, and we
demonstrate the utility of this unified controller on quadrupedal
and quadrotor robots performing dynamic obstacle avoidance
tasks. A video of these hardware demonstrations can be found
at: https://shorturl.at/fQ7BW.

I. INTRODUCTION

SAFETY is a fundamental requirement for most real-
world robotic systems spanning a wide array of modern

application domains including autonomous vehicles, assistive
devices, and medical and industrial robotics [1]. The safety-
critical nature of these new and growing use cases mandates
that dynamic safety be rigorously encoded in the controller
design while practical utility requires that robots satisfy safety
requirements with minimal cost to their performance goals.

A. Safety-Critical Control Methodologies

To make formal guarantees of system safety, we must first
provide a mathematically rigorous definition of “safety”. To
this end, safety is often encoded in robotics and control theory
as the forward invariance of a user-defined “safe-set” [2]–[4].
Several control methods been have developed for guarantee-
ing safety in this form including Control Barrier Functions
(CBFs) [5], backwards Hamilton-Jacobi (HJ) reachability [4],
and state-constrained model predictive control (MPC) [3].
While HJ methods provide strong guarantees of optimality
and safety, they often have limited applications to high-
dimensional and/or nonlinear systems due to their computa-
tional complexity. Alternatively, despite stronger theoretical
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Safe behavior achieved with improvements from 
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Fig. 1. In their standard implementations, DCBF-based safety filters and MPC
controllers with state constraints suffer from myopia and fragility, respectively.
We solve these problems by combining these two methods. This figure shows
three controllers performing dynamic obstacle avoidance. (Top) The DCBF
safety filter fails because the pointwise optimal safe action does not plan
around the obstacle. (Middle) The MPC controller with state constraints
fails because it does not account for model uncertainty and reacts too late.
(Bottom) The MPC+DCBF controller achieves safety and benefits from the
performance advantages of the MPC horizon and the inherent robustness
properties of the DCBF. For the quadruped experiments the obstacle state
estimation is performed off-board using an overhead camera and for the
quadrotor experiments it is performed on-board using and RGBd camera and
the first-person-view (FPV) masked image used for state estimation is shown.
A video of these experiments can be found at the link in [10].

assumptions required for their implementation, widespread
experimental success has been achieved for both MPC [6], [7]
and CBF-based [8], [9] methods by enforcing computationally
simple safety constraints while optimizing for tractable proxies
for performance.

In particular, MPC-based methods generally utilize a
discrete-time model of the system to approximate the optimal
control problem over a finite time horizon [3]. In a receding
horizon fashion, they apply a subset of their planned input0000–0000/00$00.00 © 2021 IEEE
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sequence before generating a new plan by re-solving the finite-
time optimal control problem (FTOCP) again at the new time.
Here, state constraints are used to encode both the system
dynamics and safety requirements which must be enforced
while solving the FTOCP that require each state in the planned
horizon to satisfy the safety requirement. While these methods
have achieved great success, they can suffer from infeasibility
during closed-loop application if the strong assumptions used
to guarantee recursive feasibility do not hold [11].

Alternatively, CBF-based safety filters generally take the
form of a constraint on the change (e.g. derivative or finite dif-
ference) of the system’s safety encoded as a scalar value [12].
In this work we consider the discrete-time reformulation of the
more common continuous-time CBF constraint. The discrete-
time control barrier function (DCBF) utilizes the discrete-time
dynamics model to enforce safety at each discrete update of
the system dynamics [13], similar to MPC. DCBFs differ from
the MPC state constraint in that they establish a feedback
relationship for safety that modulates future safety values
based on current ones. This often creates a stricter constraint
[14] that provides additional robustness properties [5], [15].
In their application, continuous-time CBF and DCBF-based
safety filters generally assume the existence of a nominal
controller that achieves performance goals, but may do so in an
unsafe fashion. These techniques then filter this controller to
enforce the safety requirement while simultaneously attempt-
ing to achieve performance goals by minimally modifying the
nominal controller in a pointwise fashion [16]. Alternatively,
they are occasionally enforced alongside a slackened control
Lyapunov constraint, in which case, the safety constraint
is enforced strictly and the convergence-based performance
constraint is enforced with a slack variable to achieve per-
formance as long as it does not conflict with safety. While
myopic, pointwise optimal methods like CBFs1 provide safety
guarantees, they often create undesirable equilibrium points
that render the system incapable of achieving its performance
goals [18]–[20].

B. Robust Safety Considerations

Regardless of control methodology, as robots venture into
the real world, they will be faced with increasing uncertainties
stemming from imperfect perception, inaccurate world mod-
els, approximate dynamics, and other random disturbances.
These error sources are often key causes of failure in the
deployment of real-world robotics, and can undermine safety
and performance guarantees that rely on perfect models of
the robotic system and its environment. Along with this
increasing uncertainty and undermined guarantees, these real-
world applications place increasing importance on the safety
of these systems. Thus, we seek robust control methods to
ensure the safety under real-world uncertainty.

Significant achievements have been made to enhance the
robustness of MPC and CBF-based methods, often by adopting
a worst-case, adversarial model of uncertainties [5], [21]–
[24]. While these methods provide strong guarantees of safety,

1Artificial potential fields (APFs) have been shown to be a special case of
DCBFs [17] and display the same myopic failure modes.

they often do so at the cost of performance, since adversarial
uncertainties are uncommon in practice. As an alternative to
these conservative, worst-case robustness techniques, stochas-
tic methods present a natural framework for generating risk-
sensitive safety guarantees when statistics of the uncertainty
distribution are known [15], [25]–[32]. These types of guar-
antees allow for desirable behavior to be found that balances
safety risk with potential performance. Although they do
not generally provide risk-free guarantees, these methods do
allow for smooth degradation of safety via variable risk-aware
levels of conservatism. Additionally, despite their utility, these
methods are often computationally complex, preventing their
widespread application to real-world robotics.

C. Overview and Contributions of this Work
In this work we analyze the mutual benefit and inherent

robustness properties obtained by combining the horizon-based
optimization of MPC methods with the decay-based safety
constraint of DCBFs. In Section II we provide mathematical
preliminaries that define safety, our problem formulation, and
the standard MPC and DCBF methodologies. The main body
of the work can then be divided into deterministic analysis and
experiments in Sections III, IV, and V and probabilistic analy-
sis and experiments in Sections VI, VII, and VIII. Specifically,
Section III presents the combined MPC+DCBF controller [33]
and novel analysis and examples of its improved recursive
feasibility guarantees and performance. Section IV considers
bounded additive uncertainty and demonstrates the improved
robustness properties of the MPC+DCBF controller. Section
V provides a demonstration of this method on a quadrupedal
robot performing dynamic obstacle avoidance. Next, Sec-
tion VI generalizes the discussion of robustness to consider
probabilistic uncertainties and shows the inherent benefits of
the MPC+DCBF control paradigm. Section VII extends this
paradigm to include state uncertainties and provides theoretical
safety guarantees in that context. Section VIII provides a
demonstration of this method on a quadrotor robot performing
dynamical obstacle avoidance with onboard, vision-based state
estimation of the obstacle. Finally, Section IX provides con-
cluding remarks and a discussion of this methods limitations
and avenues for future work.

In total, the contributions of this work are theoretical and
practical demonstrations of the mutual benefits and inherent
robustness properties of the unified MPC+DCBF controller.
In particular, we achieve improved guarantees of closed-loop
feasibility (despite reduced pointwise feasibility), amelioration
of undesirable stable equilibrium points, proofs of inherent
deterministic robustness properties that do not require a pri-
ori understandings of the disturbance bound, and risk-based
guarantees naturally arising from the MPC+DCBF framework
that extend beyond existing work to consider state uncer-
tainty. Furthermore, we provide demonstrations of the control
methodology running on quadrupedal and quadrotor robots
performing dynamic obstacle avoidance tasks.

D. Related Work
Combinations of MPC and CBF methods have been consid-

ered in many formulations including: hierarchical multi-rate
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approaches [7], [34] and learning-based combinations [35].
Our discussion aligns closest with the combinations presented
in [14], [36]–[38] which apply the DCBF condition as a
constraint in the MPC’s FTOCP. We significantly extend these
works by considering the closed-loop feasibility improvements
and robustness properties (both worst-case and probabilistic)
of the MPC+DCBF controller.

The robust safety guarantees achieved in this work are
related to robust control methods in the MPC literature such
as tube MPC [23], [24], but rely on a proof method from
continuous-time CBFs [5] that does not require an a priori
knowledge of the disturbance size and provides a desirably
smooth degradation to safety instead of catastrophic failures
as the disturbance size grows. Similarly, the stochastic safety
guarantees diverge significantly from the standard quantile-
based methods of the MPC literature [30], [39], [40] and
leverage the safety-decay property of the DCBF constraint
to create simpler-to-enforce martingale-based guarantees as in
[15], [29], [41], [42], but which extends their utility to sce-
narios with state uncertainty and improves their performance
through the addition of a receding planning horizon.

The experimental demonstrations of quadrotor-based dy-
namic obstacle avoidance provided in this paper are similar
to previous learning + event cameras [43], artificial potential
fields + event cameras [44], and MPC + motion capture [45]
works on collision avoidance, but with onboard RGBd camera-
based obstacle detection and improved theoretical safety guar-
antees and horizon-based performance optimization.

II. PRELIMINARIES

In this work we consider discrete time systems of the form:

xk+1 = F(xk,uk), ∀k ∈ N, (1)

where x ∈ Rnx , u ∈ U ⊂ Rnu , and F : Rnx×Rnu → Rnx are
the state, input, and dynamics of the system, respectively. Here
we consider the case where the input set U may be bounded.

By selecting a state-feedback controller π : Rnx → U , we
can then modify (1) to define the closed-loop system:

xk+1 = F(xk,π(xk)), ∀k ∈ N. (2)

Our goal for this paper is to select controllers, π, that can be
used to guarantee the safety of the closed-loop system (2).

A. Safety as Forward Invariance

In order to guarantee safety, we must first formalize our
notion of safety. To do this we consider a user-defined safe
set C ⊂ Rnx that the system must remain within. In particular,
we consider the case where the safe set C is defined as the
0-superlevel set of some function2 h : Rnx → R:

C ≜ {x ∈ Rnx | h(x) ≥ 0}. (3)

2While constructing safety requirements using semantic information about
the system and its environment is an interesting and critical step, we assume
that the safety requirements are given by the user as is common [2], [13], and
we leave generalized construction of safe requirements to future work.

Given this user-defined safe set, we define safety for our
system as the discrete-time forward invariance3 of C:

Definition 1 (Forward Invariance and Safety). A set C ⊂ X
is forward invariant for the closed-loop system (2) if x0 ∈ C,
implies that xk ∈ C for all k ≥ 0. Additionally, we say that
the closed-loop system (2) is “safe” with respect to C if C is
forward invariant.

Equipped with this definition of safety, we now explore
model predictive control (MPC) with safety enforced via state
constraints and discrete-time control barrier function (DCBF)
safety filters as two important classes of methods for achieving
safety in this form.

B. Model Predictive Control with State Cosntraints

MPC is a a control methodology which leverages a model-
based prediction of the system dynamics along a finite-horizon
to compute control actions. In MPC, at each time-step k the
controller plans a sequence of open-loop control actions to
minimize a cost function, and then the first action is applied
to the system. The plan of actions is then recalculated using
the updated state, and the new first control action is applied,
creating a state-feedback controller.

In MPC, to calculate the plan of control actions, the fol-
lowing discrete, finite-time optimal control problem (FTOCP)
is solved at each time-step k:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

N−1∑
i=0

c(ξi,νi) + V (ξN ) (FTOCP)

s.t. ξi+1 = F(ξi,νi), ∀i ∈ {0, . . . , N − 1}
ξi ∈ C, νi ∈ U , ∀i ∈ {0, . . . , N − 1}
ξ0 = xk, ξN ∈ CN

where c : Rnx × U → R is the stage cost and V : Rnx → R
is the terminal cost used to approximate the infinite-horizon
optimal control problem. Here we use the variables ξi ∈ Rnx

and νi ∈ Rnu to represent the planned sequence of states and
inputs given the current state xk, i.e. if the dynamics and the
state are known exactly then using uk = ν0 results in the
plan being precisely executed so that xk+1 = ξ1 for the ξ1
generated at xk.

In the FTOCP, the first constraint incorporates the discrete
time model of the system (1) along the horizon of length N ,
the state constraint ξi ∈ C (equivalently h(x) ≥ 0) ensures
that each state in the plan is safe, the input constraint νi ∈ U
ensures that the inputs are realizable on the system, the initial
condition constraint ξ0 = xk aligns the plan with the current
state, and the terminal state constraint ξN ∈ CN ⊂ C is used
to achieve recursive feasibility of the feedback controller. In
general it is assumed that CN is a safe, control-invariant set
for the inputs u ∈ U , in which case the MPC controller can
be thought of as a domain-of-attraction expander for CN . For
additional discussion of MPC and this FTOCP, please see [3].

3In this work we consider the safety of these systems at sample times. For
systems that move continuously between sample times, please see [46] for a
discussion of the sampled-data properties of these discrete-time formulations.
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To generate the MPC input, the optimal plan of inputs for
the FTOCP is computed as [ν∗

0 (xk), . . . ,ν
∗
N−1(xk)] and then

the first action is applied to the system, defining the MPC
controller:

πMPC(xk) = ν∗
0 (xk). (MPC)

By enforcing safety in the form of a state constraint in the
FTOCP, πMPC(x) selects control actions which ensures the
safety of the system at each discrete update of (2).

C. Control Barrier Functions

Alongside state-constrained MPC, CBFs have gained pop-
ularity as an alternative tool for achieving safety guarantees.
While CBFs are more commonly studied in their continuous
time form [2], in this work we focus on their discrete-time
implementation as first presented in [13]. This discrete-time
formulation will allow us to deploy them as a constraint in
the FTOCP as first suggested in [33].

For a safe-set C defined as in (3), we refer to h as a DCBF
if it satisfies the following definition:

Definition 2 (Discrete-time Control Barrier Function (DCBF)
[13]). Let C be the safe set given in (3). A function h : Rnx →
R is a discrete-time control barrier function (DCBF) for (1)
if there exists an α ∈ [0, 1] such that for each x ∈ C there
exists a u ∈ U such that:

h(F(x,u)) ≥ αh(x), (DCBF)

We note a state constraint over a horizon of length 1 is the
special case of DTCBFs when α = 0.

Intuitively, when α > 0, the DCBF inequality requires that
the system safety, as represented by h(x), cannot decay faster
than geometrically, i.e. h(xk) ≥ αkh(x0). Additionally, the
maximum decrease in safety at each step goes to zero as the
system approaches the boundary of the safe set4. The authors
in [13] formally relate DCBFs to the safety of the closed-loop
system (2) with respect to C:

Theorem 1 (DCBF Safety [13, Prop. 4]). If h : Rnx → R in
(3) is a DCBF for (1), then any π : Rnx → U such that:

h(F(x,π(x))) ≥ αh(x), for all x ∈ C, (4)

renders the closed-loop system (2) safe with respect to C.

As opposed to MPC’s horizon-based cost, DCBFs are
generally implemented as a safety filter [16] that takes a
nominal (but potentially unsafe) controller πnom : Rnx → U
and modifies it using the DCBF h as:

πDCBF(x) = argmin
u∈U

1

2
∥u− πnom(x)∥2 (DCBF-OP)

s.t. h(F(x,u)) ≥ αh(x).

4The standard continuous-time CBF condition d
dt
h(x) ≥ −γh(x) for γ >

0 becomes h(xk+1) − h(xk) ≥ −γh(xk) for γ ∈ (0, 1) in discrete-time.
Defining α = 1− γ recovers the condition h(xk+1) ≥ αh(xk)

where the DCBF is used to minimally modify the nominal
control action to achieve safety. Assuming feasibility5, the
πDCBF controller guarantees safety for the system (1) by
selecting inputs that satisfy the DCBF inequality.

As a safety filter on πnom, performance is indirectly achieved
through the nominal controller. If the safety constraint and
the performance objective of the nominal controller do not
conflict, then the nominal controller allows the system to
achieve its performance goal. However, if they do conflict,
then myopic pointwise modifications are made to the nominal
controller that enforce safety but may destroy the performance
capabilities of the system [20].

III. COMBINED MPC+DCBF

The main theoretical focus of this work is to consider the
safety, performance, and robustness properties of the unified
controller generated from the FTOCP+DCBF problem:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

N−1∑
i=0

c(ξi,νi) + V (ξN ) (FTOCP+DCBF)

s.t. ξi+1 = F(ξi,νi), ∀i ∈ {0, . . . , N − 1}
h(ξi+1) ≥ αh(ξi), ∀i ∈ {0, . . . , N − 1}
νi ∈ U , ∀i ∈ {0, . . . , N − 1}
ξ0 = xk

where we replace the state constraint xi ∈ C (i.e., h(ξi) ≥ 0)
with the DCBF constraint for some α ∈ [0, 1] and we remove
the terminal constraint ξN ∈ CN .

As with MPC, we derive a controller from the
FTOCP+DCBF by using the first input of the open-loop plan:

πMPC+DCBF(xk) = ν∗
0 (xk). (MPC+DCBF)

A. Feasibility under the DCBF Assumption

Due to the assumption of feasibility of the DCBF inequality,
the set C is assumed to be control invariant and we do not
require a terminal constraint CN to guarantee the safety of the
closed-loop system (2) and recursive feasibility of the FTOCP
or FTOCP+DCBF.

We formalize these guarantees in Thm. 2 and Cor. 1:

Theorem 2. If h is a DCBF for (1) and x0 ∈ C, then
πMPC+DCBF is recursively feasible and (2) is safe w.r.t. C.

Proof. Since the FTOCP+DCBF incorporates the true sys-
tem dynamics and since the initial condition is safe, the
FTOCP+DCBF problem is feasible because h satisfies Def.
2. Additionally, Thm. 1 implies the next planned state is safe.
After implementing the first planned control action, the next
state is safe and the same analysis applies to achieve feasibility
and safety at the next step. By recursion, the MPC+DCBF

5If infeasible, a slack variable can be added to recover feasibility and its
effect on safety can be analyzed using the ISSf framework [5]. Additionally,
unlike the affine inequality constraint that arises with continuous-time CBFs
[12], the optimization problem (DCBF-OP) is not necessarily convex. To
ameliorate this issue, it is often assumed that h ◦ F is concave with respect
to u [13], [36], [47], [48], or the nonconvex problem is approximately solved
through iterative convex optimization [49].
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controller is feasible for all k ≥ 0 and (2) is safe with respect
to C for all k ≥ 0.

Additionally, since the DCBF definition (Def. 2) implies
that C is a control invariant set, C can also be used as a
terminal constraint in the standard FTOCP to guarantee safety
and recursive feasibility.

Corollary 1. If h is a DCBF for (1) and CN = C, then πMPC

is recursively feasible and (2) is safe with respect to C.

Proof. Since h is a DCBF, C is a control invariant set for
u ∈ U . Thus, since CN = C, the controller πMPC is recursively
feasible and (2) is safe for all k ≥ 0 [3, Thm. 12.1].

This assumption of feasibility of the DCBF constraint is a
very strong assumption that may not hold in general and which
is difficult to verify. When it does not hold, infeasibilities
may occur in the closed-loop applications of the MPC or
MPC+DCBF controllers. Before exploring the feasibility of
these controllers when h is not assumed to be a DCBF, we
first define the concept of time-to-failure which we will use
to provide novel analysis showing that the DCBF tightened
constraint can extend closed-loop feasibility, a perspective
which drastically differs from the prior analysis on this topic
[14], [37] which have previously focused on the reduction
in pointwise feasibility caused by incorporating the DCBF
constraint in the FTOCP.

B. Time-to-Failure

The difference between the MPC and MPC+DCBF con-
trollers comes from the adjustment of the safety constraint
from h(xi) ≥ 0 to h(xi+1) ≥ αh(xi). This creates a safety-
feedback requirment that constrains the updated safety value
by a function of its current value. For α > 0 and x ∈ C, this
constraint is tighter than the state constraint with α = 0. In
particular, it tightens this constraint so that the system not only
maintains x ∈ C, but also maintains a safety-decay property
that can be seen as a generalization of the standard time-to-
collision metric for collision avoidance.

Time-to-collision, denoted as Tc, is a common safety indi-
cator for vehicle collisions. It was originally introduced as:

The time that remains until a collision between two
vehicles would have occurred if the collision course
and speed differences were maintained. [50]

Time-to-collision is a well studied metric to identify traffic
safety [51]–[53] and generally represents a robustness margin
for the system’s current level of safety.

Just as vehicle collision avoidance can be analyzed as
forward-invariance described using a CBF [8], we can sim-
ilarly generalize time-to-collision to DCBFs6 as:

Definition 3 (Time-to-Failure). Consider the discrete-time
system (2) and a function h : Rnx → R. If the system satisfies
h(F(x,π(x))) ≥ αh(x) for some α ∈ [0, 1) and all x ∈ C,
then the time-to-failure for this system is Tf (α) ≜ 1

1−α .

6An analogous continuous-time version of time-to-failure can be defined for
continuous-time CBFs as Tf,CT = 1

α
. In this case, Tf,CT represents the time

constant of the worst-case, allowable safety decay rate d
dt
h(x) = −αh(x).

As with time-to-collision, time-to-failure is a heuristic emerg-
ing from the notion that the system safety will likely continue
to decay at its current rate, e.g. if the system is initially
safe (i.e., h(x0) > 0), then (4) bounds the change in safety
∆h(x0) ≜ h(x1) − h(x0) ≥ (α − 1)h(x0). If this safety
decrement ∆h(x0) is repeated iteratively, then h(xk) ≥
h(x0)(1 − (1 − α)k). It follows that the value h(xk) can be
less than 0 for the first time7 when k = ⌊Tf (α)⌋+ 1.

Thus, the DCBF constraint with α > 0 in the FTOCP
+DCBF extends the horizon length over which safety is
considered. While πMPC uses the system model to determine
if a safety failure will occur within N steps, πMPC+DCBF uses
a constant decay model to extend this safety prediction by an
additional ⌊Tf (α)⌋ steps. In this way, πMPC+DCBF can react
earlier when system safety begins to decay.

C. Improved Feasibility Guarantees

Equipped with this definition of time-to-failure, we now
return to the problem of controller feasibility when h is not
a valid DCBF and the control invariance assumption does not
hold. This is particularly important since synthesizing valid
DCBFs can be very difficult and generally requires solving
the recursive feasibility problem8 [58]. In this case, Thm. 2
and Cor. 1 do not apply and it is possible for the MPC and
MPC+DCBF controllers to become infeasible.

Since the DCBF constraint is a tightening of the standard
MPC state constraint when x ∈ C, there are less states x ∈
C for which πMPC+DCBF is feasible. Where other works have
sought to improve this pointwise feasibility by allowing α to
vary [37] or by only enforcing the DCBF constraint on the first
step of the horizon [14], we instead take an entirely different
approach and show that the reduced pointwise feasibility can
actually improve closed-loop feasibility.

To do this we consider the case where, for all x ∈ C we
assume that:

∀u ∈ U , ∆h(x,u) ≥ −δ (5)
∀ζ ∈ [ϵ, δ], ∃u ∈ U s.t. ∆h(x,u) = −ζ (6)

where δ ≥ ϵ > 0. The first assumption (5) captures the
idea that, given bounded inputs and dynamics, the system
can only decrease its safety by at most −δ within a single
step. The second assumption (6) captures the idea that the
system can only improve its safety degradation by so much
over a single step. Notably, proving infinite horizon safety or
feasibility guarantees using these assumptions is impossible
so we instead seek to guarantee feasibility and safety over the
longest possible finite horizon.

To this end we have the following feasibility guarantee for
the πMPC controller:

7Here we use the floor function ⌊·⌋ to account for the integer nature of
k ∈ N. The floor function returns the largest integer less than or equal to its
argument.

8While several works have developed CBF synthesis methods for different
classes of systems including hierarchical systems with tracking controllers
[54], feedback-linearizable systems [55], and incorrect relative degree [56],
[57], we focus on the general case when h might not be a DCBF.
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Fig. 2. Plots demonstrating the minimum number of guaranteed feasible solutions for the closed-loop application of the MPC+DCBF controller for varying
α according to Prop. 1 (α = 0) and Thm. 2 (α ∈ (0, 1)). The y axis is shown using a squared scale to better capture the range of possible outputs. The
minimum number of feasible steps is plotted for the state constraint (i.e., α = 0) in green and for the MPC+DCBF controller for varying α ∈ (0, 1) in
blue. The other parameters used to generate this plot include: h(x0) = 10, δ = 1, and N = 25. The plots from left to right show the minimum number
of feasible steps for varying minimum safety decay values ϵ. As the minimum safety decay value goes to zero, the minimum number of guaranteed feasible
steps generated by the MPC+DCBF can dramatically outperform the state constraint-based feasibility guarantee despite the pointwise reduction in feasibility
with respect to state. This is due to the closed-loop properties of applying the more conservative MPC+DCBF controller.

Proposition 1. If the closed loop system (2) satisfies (5) and
(6), its initial safety is h(x0) > 0, and it attempts to enforce
constraint (4) with α = 0 over a horizon of length N ∈ N for
u ∈ U , then the FTOCP will be feasible for all:

k ≤ h(x0)−Nϵ

δ
+ 1 (7)

The proof of Prop. 1 is provided in Appx. A .
Next we present a closed loop feasibility guarantee for

πMPC+DCBF that can provide a longer guarantee of feasibility:

Theorem 3. If the closed loop system (2) satisfies (5) and (6),
its initial safety is h(x0) > 0, and it attempts to enforce the
constraint (4) for α ∈ (0, 1) over a horizon of length N ∈ N
for u ∈ U and the parameters of the system satisfy:

Tf (α) ≜
1

1− α
≥ δ + (N − 2)ϵ

δ + ϵ
, (8)

then the FTOCP+DCBF will be feasible ∀k ≤ kδ +kϵ where:

kδ = max

{⌊
h(x0)

δ
− Tf (α)

⌋
, 0

}
(9)

kϵ = logα

(
ϵ (Tf (α) +N − 1)

h(x0)− kδδ

)
+ 1 (10)

The proof of Thm. 2 is provided in Appx. B.
Figure 2 provides plots showing the relative feasibility

guarantees of Prop. 1 and Thm. 2 for a variety of ϵ and
α values. Intuitively, this figure and theorem show that, as
the ability to achieve safety improves (i.e., ϵ → 0), higher
α results in less pointwise feasibility, but also extends the
guaranteed closed-loop feasibility, similar to how a reduction
in pointwise feasibility for tube-MPC can be used to generate
better recursive feasibility guarantees [59].

D. Improvements to Undesirable Equilibrium

Like infeasibility for MPC, a common deleterious property
arising from the use of DCBFs is the appearance of undesirable
equilibrium points which can destroy system performance
by preventing the system from reaching its goal. These un-
desirable equilibrium points are often a result of controller
continuity and topological obstructions that cause the desired
control action and the DCBF-OP safety filter πDCBF to inter-
fere [18], [20], [60]. The MPC+DCBF controller πMPC+DCBF

reduces the impact of this problem (and potentially removes it
entirely) by searching for optimal control actions which may

be discontinuous with respect to space, but can performantly
navigate around topological obstructions in the safe set.

We can see these undesirable stable equilibria arise in the
discrete-time variant of the example from [20, Ex. 5.4]. In
the following we show how the πMPC+DCBF controller can be
used to reduce the effects of these undesired equilibria by
optimizing for performance metrics along a receding horizon.

Example 1. Consider a two dimensional single integrator
system with the dynamics xk+1 = xk + ∆tuk, nominal
controller πnom(x) = −x, and safety defined as h(x) =

−b4 + ∥x − r1∥2∥x − r2∥2 for α = e−1∆t , r1 =
[
a c2

]⊤
,

and r2 =
[
a −c2

]⊤
with a = 3, b = 1.05 ∗ a, c2 = 4, and

∆t = 0.05.
We implement the πDCBF safety filter by linearizing the con-

straint at each step and we implement the MPC+DCBF using
sequential quadratic programming where the first solution is
initialized to either a semicircle on the left or the right of the
obstacle depending on the sign of the x component of x0 +ρ
where ρ ∼ unif(−0.01, 0.01) is sampled from a 2D normal
distribution. The results are shown in Fig. 3.

We find that all trajectories generated by the πMPC+DCBF

controller are safe and reach the goal location at (0, 0) while
avoiding the undesirable equilibrium point that captures many
of the trajectories generated by the πDCBF safety filter.

IV. MPC+DCBF DETERMINISTIC ROBUSTNESS

In the previous section, we explored the benefits to system
performance and closed-loop feasibility that can be achieved
by combining the standard MPC and DCBF formulations
when the system dynamics are known exactly. In this section
we extend this analysis to show the benefits of the unified
πMPC+DCBF controller under bounded dynamics uncertainty.

To perform this analysis, we now consider the discrete-time
dynamical system (1) subject to additive dynamics uncertainty:

xk+1 = F(xk,uk) + dk, ∀k ∈ N. (11)

This uncertainty is represented by dk which we assume is
bounded by some δ ≥ ∥dk∥ ≥ 0 for all k ≥ 0.

As with the undisturbed system (1), a controller can be
added to generate the closed loop dynamical system:

xk+1 = F(xk,π(xk)) + dk, ∀k ∈ N. (12)
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Fig. 3. Closed-loop trajectories from several initial conditions (black dots) for
the system in Ex. 1 using πMPC+DCBF (blue) and using πDCBF (red). Here we
see that πMPC+DCBF is far better at avoiding the undesired equilibrium point
and reaching the goal at (0,0) shown as a yellow star.

Next we consider the robustness safety properties of this
closed-loop system.

A. Input-to-State Safety

In achieving robust safety, the feedback of the current safety
value used in the DCBF constraint (4) produces a useful
robustness property called input-to-state safety (ISSf) [5] that
is dependent on the α ∈ [0, 1] parameter. Here we present
a discrete-time variant of the continuous-time ISSf property
which is a generalization of the input-to-state stability (ISS)
property of continuous-time stable systems [61].

Theorem 4 (Input-to-State Safety (ISSf)). Consider the dis-
turbed system (11) with bounded disturbance ∥dk∥ ≤ δ for
some δ ≥ 0. If the closed-loop system (12) satisfies the DCBF
condition (4) for some α ∈ [0, 1), some Lipschitz continuous
h : Rnx → R with Lipschitz constant Lh ≥ 0, and all x ∈ Cd
defined as

Cd = {x | h(x) ≥ −d} , (13)

with d = LhδTf (α), then the closed loop system (12) is safe
with respect to the enlarged set Cd and h(xk) ≥ αkh(x0) −∑k−1

i=0 αiLhδ for all k ≥ 0.

Please see [42, Prop. 2] for a proof of Thm. 4.
Thus, under a bounded additive disturbance, the DCBF

condition (4) for α ∈ [0, 1) can still generate guarantees of
set invariance with respect to some larger set Cd ⊃ C even
when the original safe set C is not invariant. This robustness
result differs from those generated by tube MPC [23], [24]
approaches since the controller design does not require an a
priori knowledge of the disturbance size.

Given this understanding of ISSf, we now compare the
robustness of the πMPC+DCBF controller for varying α ∈ [0, 1),
where α = 0 encodes the typical MPC state constraint.
Importantly, α has the following effect on the system safety
depending on whether x is inside or outside of C:

• x ∈ C, larger α results in a tighter constraint that bounds
the maximum rate that h(x) can decrease to 0,

• x /∈ C, larger α results in a looser constraint that bounds
the minimum rate at which h(x) must increase to 0.

Notably, the size of the expanded safe set Cd in (13)
increases monotonically with α. However, α > 0 may still be
desirable since it gracefully brings the system back towards
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Fig. 4. Plots displaying the state (x, vx) trajectories for the double integrator
system (top), MPC+DCBF inputs (ax) for α = e−∆t (middle) and the
state constrained problem where α = 0 (bottom). On the left, trajectories are
shown for a constant additive disturbance of dconstant =

[
0.1∆t, 0

]⊤ which
occurs at every step with ∆ = 10−3. In this case both trajectories cross the
safety boundary (gray dashed line). The trajectory with α > 0 has a larger
violation of safety but still achieves safety of Cδ whose boundary is shown as
the blue dashed line. On the right, a single impulse disturbance of dimpulse =[
10∆t, 0

]⊤ occurs at k = 500 causing both trajectories to violate safety.
Importantly, although the state constraint may result in smaller violations in
some cases, it requires very large inputs, approximately an order of magnitude
larger than those for the CBF, which may cause problem infeasibility when
U is bounded.

C via geometric decay of h(x) whereas α = 0 will force the
system to return to C in a single step, a behavior that will
likely result in infeasibility or overly aggressive behavior as
can be seen in the following example:

Example 2. To demonstrate the effect of α on the ISSf property
and the associated inputs, we consider a one-dimensional,
discrete-time double integrator system with ∆t = 10−3:[

xk+1

vk+1

]
︸ ︷︷ ︸
xk+1

=

[
1 ∆t

0 1

] [
xk

vk

]
︸ ︷︷ ︸
xk

+

[
1
2∆t

∆t

] [
ak

]︸︷︷︸
uk

, (14)

with a safety condition that conflicts with the goal location:

h(x) = 1− x, xgoal =
[
2, 0

]⊤
. (15)

We simulate the system with both α = 0 and α = e−∆t for
both a constant disturbance and an impulsive disturbance:

dconstant =
[
0.1∆t

]
dimpulse =

[
10∆ts

]
(16)

The results of these simulations can be seen in Fig. 4.
Although α > 0 may lead to larger safety violations, it also

results in much smoother trajectories and requires significantly
smaller inputs (by approximately an order of magnitude)
because constraint (4) enforces geometric convergence back
to the set whereas the state constraint (α = 0) requires the
system to return to C in a single step.

Here we find that the DCBF inequality (4) results in a
smooth degradation of safety as the disturbance size increases
and that, if the system becomes unsafe, the DCBF facili-
tates a graceful recovery of safety through its decay-based
constraint. Alternatively, the step-wise safety requirement of
the MPC controller requires the system to become safe again
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immediately, which can lead to overly aggressive behavior and
infeasible safety requirements. In practice we see this manifest
on hardware when the true system and the model used in the
FTOCP differ, which can lead to safety failures when either the
FTOCP becomes infeasible or requires inputs which exceed
the real-world bounds. These phenomena will be seen in the
experimental demonstration in the next section.

V. QUADRUPED EXPERIMENTS

To demonstrate the utility of the MPC+DCBF method and
compare it to the effectiveness of other methods, we apply the
proposed control algorithms to a dynamic collision avoidance
scenario using a Unitree Go2 quadruped. We leverage a
reduced order model (ROM) hierarchical control framework
[54] for the platform based on a two-dimensional single-
integrator high-level control interface enabling the assignment
of safe translational velocity commands without modification
of the low-level locomotion controller.

To generate the function h defining safety, we first perceive
the experimental space using a fixed overhead RGB camera,
which provides a persistent global image stream of the robot’s
2D environment at 60 fps. This video stream is passed to
the efficient Track-Anything-Model (efficientTAM) [62] im-
age segmenter, a high-speed distillation of the Meta SAM2
segmentation model [63]. By segmenting the environment to
detect predefined obstacles, we build a 2D occupancy map
of the space. The occupancy map is buffered by the physical
geometry of the Go2 quadruped, enabling safety of the robot
to be defined via its centroid. Next, to produce h we use
the Poisson-based algorithm developed in [64]. This method
yields a single continuous h for the entire experimental envi-
ronment, which can be queried during autonomous operation.
The velocity of the obstacle is estimated using optical flow
[65] on the segmented images and incorporated as a time-
varying component in h. Additionally, an overhead OptiTrack
motion capture system is used to estimate the translational and
rotational states of the robot.

We employ this function h in the πMPC+DCBF controller,
producing safe velocities which the quadrupedal system
tracks. The result of the model mismatch between the true
quadrupedal system and the single integrator dynamics used
by πMPC+DCBF controller can be modeled as a disturbance
to the system and analyzed using the recursive feasibility of
Prop. 1 and Thm. 2 and through the ISSf theoretical lens, in
which case the πMPC+DCBF controller may produce extended
periods of recursive feasibility and graceful safety degradation
whereas the MPC controller may result in earlier and more
catastrophic failures as it is practically unable to track large
velocity commands.

To highlight safety-critical performance, we command
the quadrupedal robot to hold a fixed reference coordinate
(1.75m, 2.75m) while staying in the safe set. We then roll
a dodgeball into the environment, using a fixed-height ramp
to produce a repeatable dynamic collision avoidance scenario.
Across trials, safe set forward invariance was enforced via
the three aforementioned methods: 1) πMPC+DCBF – the focus

of this work, 2) state-constrained πMPC with α = 0 – the
naive MPC approach presented in Section II-B, and 3) the
πDCBF-OP safety filter using a proportional nominal controller
– the myopic control approach presented in Section II-C. The
resulting data for a single set of comparison experiments can
be seen in Fig. 5.

By examining the top plot in the figure, it is immediately
apparent that the MPC+DCBF method successfully enforces
safe set forward invariance throughout the duration of the
experiment. Meanwhile, state-constrained MPC and the DCBF
safety filter both result in safety violations. Furthermore, the
overhead camera images highlight key differences in how the
Go2 quadruped attempt to avoid the dynamic obstacle. Due
to its increased robustness and the incorporation of a planning
horizon, the MPC+DCBF controller begins to command its
avoidance maneuver significantly earlier than the other two
methods. Although the decay of h for all three methods
appears the same until 0.55 seconds, the MPC+DCBF begins
to command motion before 0.25 seconds, moving along level
sets of h to attain a more optimal position for future actions.
This is a direct result of the tightening of the constraints of the
underlying optimization problem since α > 0, which forces
the DTCBF constraint to activate sooner. Conversely, the state-
constrained MPC controller reacts too late, commanding a
large input to the single-integrator ROM which could not be
tracked by the low-level locomotion controller. This inevitably
led to a safety failure (t = 0.75 sec). Similarly, the small lateral
gradients of h in the x direction cause the DCBF-OP controller
to be unable to effectively “flow” around the obstacle given
the real-time sampeld-data nature of the hardware experiment,
eventually causing a safety failure as quadruped left the
rectangular safe region (t = 1.05 seconds).

These experimental results were highly repeatable, as can
be seen in the videos at the link in [10]. In fact, under these
particular experimental conditions, the MPC+DCBF method
maintained a 100% success rate, while the state-constrained
MPC and DCBF-OP methods each had 0% success rates.

VI. PROBABILISTIC SAFETY GUARANTEES

In this section, we extend our analysis of robustness beyond
the worst-case ISSf property presented in Section IV to
consider probabilistic and potentially unbounded disturbances.
In particular, we will show that the stochastic reformulations
of the DCBF constraint used in [15], [42] provide probabilistic
robustness guarantees for the MPC+DCBF controller that may
not exist for similar reformulations of the state-constrained
MPC controller.

To provide these probabilistic guarantees, first let (Ω,F ,P)
be a probability space where F0 ⊂ F1 ⊂ · · · ⊂ F is a
filtration of F . Given this probability space, we now consider
discrete-time dynamics with random uncertainty:

xk+1 = F(xk,uk,dk), dk ∼ D(xk:0), ∀k ∈ N, (17)

where dk is a random disturbance sampled from a distribution
D(xk:0) that is dependent on the history of the system’s
states xk:0 and that is a Fk+1-measurable random variable
taking values in Rnd . Here we generalize the analysis beyond
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Fig. 5. Quadrupedal robot dynamic obstacle avoidance experiments for the DCBF-OP in red, state-constrained MPC (i.e., MPC+DCBF with α = 0) in green,
and the MPC+DCBF controller in blue. (Top) Time series plots of the safety value h(x) for each controller. The MPC+DCBF successfully maintains safety
during the experiment while the state-constrained MPC and the DCBF-OP both result in safety failures. (2nd Row) Overhead images with the dynamic
obstacle highlighted in green and contour plots of h(x) through time (left to right: t = 0 to t = 1.5) for the MPC+DCBF experiments. The quadruped
successfully moves out of the way to avoid the dynamic obstacle. (3rd Row) Overhead images and safety contour plots for the DCBF-OP controller which
is unable to plan around the obstacle and gets squeezed in between the wall and the dynamic obstacle until a failure occurs and the quadruped steps out of
the safe region at t = 1.0 second. (4th Row) Overhead images and safety contour plots for the MPC controller which reacts too late and a safety failure and
collision occur at approximately t = 0.75 sec. (Bottom) A colorbar showing the meaning of the colors in the h(x) contour plots.

the additive disturbance of (11) to consider a discrete-time
dynamics function that takes the disturbance uncertainty as an
arbitrary input, i.e. F : Rnx × Rnu × Rnd → Rnx .

As before we can use a state-feedback controller π : Rnx →

Rnu to create the closed-loop system:

xk+1 = F(xk,π(xk),dk), dk ∼ D(xk:0), ∀k ∈ N, (18)

where the updated state is now a random variable given the
current state information, and we may be unable to predict
exactly how the state will evolve. In this case, our new goal
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will be to define and guarantee a probabilistic notion of safety
for this stochastic closed-loop system.

To make these guarantees, we next provide a important
background information on stochastic safety and martingales
and then present tools for generating probabilistic safety
guarantees using various martingale concentration inequalities.

A. Background on Probabilistic Safety and Martingales

First, we must define the notion of safety that we seek
to consider for the stochastic closed loop system (18). This
definition is of particular importance since the probability-
1, infinite-horizon guarantees of Thms. 1 and 4 may be
impossible to achieve for systems like (18) given the presence
of potentially unbounded uncertainty9. In fact, the probability
that the system remains in any bounded set forever is zero in
general due to the unbounded tails [68, Sec. IV].

This observation motivates a widely used (see [15], [29],
[41], [69]) alternative finite-horizon definition of safety that is
characterized by bounding the probability that the system will
leave the safe set C within K ∈ N steps.

Definition 4 (K-Step Exit Probability). For any K ∈ N and
initial condition x0 ∈ Rnx , the K−step exit probability of the
set C for the closed-loop system (18) is:

Pu(K,x0) ≜ P{xk /∈ C for some k ≤ K} (19)

In order to provide a bound for this K-step exit probability,
Pu(K,x0), we first introduce martingales whose concentration
inequalities will be useful in achieving robust safety guaran-
tees. Martingales, and the related supermartingale, are classes
of stochastic processes defined by the relationship between
their mean and previous value:

Definition 5 (Martingale [70], [29]). Let (Ω,F ,P) be a prob-
ability space with a filtration {F0,F1, . . . ,F}. A stochastic
process Wk that is adapted to the filtration and is integrable
at each k is a martingale if

E[ Wk+1 | Fk ] = Wk, ∀k ∈ Z (a.s.). (20)

Additionally, if Wk is a supermartingale if it satisfies:

E[ Wk+1 | Fk ] ≤ Wk, ∀k ∈ Z (a.s.). (21)

For the probablistic guarantees that will be presented in
the remainder of this work, we will rely on this notion of a
supermartingale which can be thought of as processes that,
on average, decay over time. This notion aligns naturally with
the decay-based DCBF constraint. Just as supermartingales are
defined by an inequality relationship between their current and
previous values, the DCBF condition (4) enforces a similar
inequality relationship between the current and previous values
of safety h(xk+1) and h(xk). To extend DCBFs to the
stochastic setting and solidify their connections to martingales

9While probability-1, infinite-horizon guarantees have been made for
continuous-time stochastic systems governed by stochastic differential equa-
tions (SDEs) [66], [67], they require infinite controller bandwidth which is
impossible to achieve for real-world robotic systems with zero-order-hold,
sampled-data implementations.

we consider the following stochastic variant of the DCBF
condition (4):

E[ h(xk+1) | Fk ] ≥ αh(xk), (22)

for some α ∈ (0, 1). This expectation-based modification to
(4) regulates the expected value of safety at the next step
instead of the true value, since the exact value of h(xk+1)
is random and unknowable at time-step k with filtration Fk.

In practice, the stochasticity of real-world systems is often
disregarded, in which case the practitioner may create con-
trollers which consider the expected value of safety to be
the true value, especially when the variance is small. If this
is the case, then those standard implementations provide the
inherent robustness properties (modulo Jensen’s gap) presented
in the remainder of this section without requiring additional
modifications. This can be thought of as the inherent stochastic
robustness property of the MPC+DCBF framework.

In the next two subsections we present how the stochastic
variant of the DCBF inequality (22) has direct connections
to martingales, which allows concentration inequalities from
stochastic process theory to be leveraged to provide guaranteed
bounds on the K−step exit probabilities for (18).

B. Probabilistic Safety Guarantees for DCBFs using Martin-
gale Concentration Inequalities

In this section, we show how supermartingale concentration
inequalities can be used to make theoretical guarantees on the
closed-loop system (18) that satisfy the stochastic DCBF con-
dition (22). In this context, one particularly useful martingale
concetration inequality is Ville’s inequality [71] which bounds
the probability that a non-negative supermartingale rises above
a particular threshold. Several works have incorporated this
lemma into safety [15], [29], [69] and stability [41], [68] guar-
antees. The safety guarantees generated by Ville’s inequality
for DCBF-based systems were summarized in [42] as:

Theorem 5 (Safety using Ville’s Inequality [15]). If (18)
satisfies (22) for all k ≤ K and if, for some B > 0, the
function h : Rnx → R satisfies h(x) ≤ B for all x ∈ Rnx ,
then

Pu(K,x0) ≤ 1− αKh(x0)

B
. (23)

This guarantees that the risk of the system becoming unsafe
within K steps is upper bounded by a function that decays to
1 with time and which depends on the system’s initial safety
“fraction”, h(x0)/B. While the original definition of h may
not be bounded, saturation can be used to build functions
that satisfy the upper boundedness requirement of Thm. 5,
especially since positive values of h do not affect the shape
of C or its expansion Cd. The utility of this guarantee was
demonstrated on a quadrotor drone with significant chaotic
disturbances avoiding collisions with the ground in [72]. Ulti-
mately, these experiments showed that the probabilistic guar-
antee of Thm. 5 could be used to achieve highly-performant
safe behavior.

Another useful supermartingale concentration inequality is
Freedman’s inequality [73, Thm. 4.1] which requires an al-
ternative set of assumptions and has been shown to provide
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tighter guarantees than Thm. 5 in certain settings [42, Prop.
1]. The resulting safety guarantee generated by applying
Freedman’s inequality for DCBF-based systems was achieved
in [42] as:

Theorem 6 (Safety with Freedman’s [42]). If (18) satisfies
(22) for all k ≤ K and if, for some δF , σF > 0, the following
bounds on the difference between the true and predictable
update (24) and the conditional variance (25) hold for all
k ≤ K:

E[ h(xk) | Fk−1 ]− h(xk) ≤ δF , (24)

Var( h(xk+1) | Fk ) ≤ σ2
F , (25)

then the K-step exit probability is bounded as:

Pu(K,x0) ≤
(

ξ2

λ+ξ2

)λ+ξ2

eλ (26)

where λ = αKh(x0)
δF

and ξ = σF

√
K

δF
.

As with Thm. 5, the utility of the guarantee provided by Thm.
6 was shown via experimental demonstration. In this case
it enabled safe navigation of complex environments using a
bipedal robot operating with significant uncertainty [74].

Furthermore, since Thm. 6 requires a bound on the dif-
ference between the true and expected values of safety, the
worst-case bounding analysis of ISSf and Thm. 4 also ap-
plies. To compare with ISSf’s worst-case safe set Cd, [42]
anlyzes the K−step exit probabilities over this expanded safe
set. A simulated comparison of the ISSf property with the
probabilistic bound that can be generated using Freedman’s
inequality is provided in [42, Sec. III.C]. These simulations
show that, by utilizing a probabilistic understanding of the
underlying disturbance distribution in place of the adversarial
disturbance bound, we can generate useful risk-based safety
probabilities for a variety of Cd level sets that are significantly
less conservative than standard ISSf.

C. Probabilistic Safety with MPC+DCBF

As with the deterministic case, safety filters that enforce
the expectation-based DCBF condition (22) provide pointwise
optimal control actions while guaranteeing a K-step exit
probability bound, but they suffer from the same myopia and
undesirable equilibrium that their deterministic counterpart
demonstrated in Ex. 1 and Fig. 3. Thus, to benefit from
the horizon-long optimization of MPC, in this section, we
consider risk-based safety guarantees for system (18) under the
influence of a modified MPC+DCBF controller that accounts
for stochastic dynamics uncertainty.

Similarly, we note that the stochastic guarantees of Thms.
5 and 6 rely on α ∈ (0, 1) and cannot be used to provide
guarantees when α = 0. The self-referential, safety-feedback
property of the DCBF constraint is critical in creating the
necessary supermartingale relationship to invoke the concen-
tration inequalities, and when α increases toward 1, these
bounds guarantee a lower risk of safety failure. Alternatively,
when α = 0, as in the typical state-constraint formulation,
these methods can no longer be used to make probabilistic
guarantees and return vacuous probability bounds. Thus, the

stochastic DCBF constraint provides inherent probabilistic ro-
bustness that the standard MPC problem with an expectation-
enforced state constraint does not.

As in the deterministic case, to benefit from the horizon
based planning of MPC and the inherent robustness properties
of stochastic DCBFs, we propose unifying them in the form
of a stochastic Model-Aware Risk-Informed Optimization
(MARIO) optimization problem:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

E

[
N−1∑
i=0

c(ξi,νi) + V (ξN )

∣∣∣∣Fk

]
(MARIO)

s.t. ξi+1 = F(ξi,νi,di), ∀i ∈ {0, . . . , N − 1}
E[h(ξi+1)|Fk] ≥ αh(ξi), ∀i ∈ {0, . . . , N − 1}
νk ∈ U , ∀i ∈ {0, . . . , N − 1}
di ∼ D(xk:0)

ξ0 = xk

with the MARIO controller πMARIO(xk) = [ν∗
0 (xk)].

In the reformulation of FTOCP+DCBF to MARIO, we
replaced (4) with the expectation-based condition:

E[h(F(ξi,νi,di))|Fk] ≥ αh(ξi), ∀i ∈ {0, . . . , N}. (27)

Importantly this reformulation is always conditioned on Fk

for all prediction steps i along the horizon. Thus, the planner’s
understanding of the uncertainty distribution at each step is
only dependent on the current state history, D(xk:0), making
this controller causal and realizable.

When practitioners ignore the stochasticity of real-world
systems in implementing the πMPC+DCBF controller, they often
assume that they can predict the “true” value of safety at the
next step [33]. This “true” prediction can be thought of as
an approximation of the expected value of safety at the next
time-step k+1 given the current information about the system
(i.e. xk), in which case the FTOCP+DCBF can be seen as an
approximation of MARIO.

Since this controller enforces the expectation-based DCBF
constraint (22) at the first step, the closed loop system (18)
under this controller satisfies the DCBF condition required for
Thms. 5 and 6 to hold. As mentioned above, these theorems
allow us to make guarantees for the πMARIO controller only
when α > 0 and not when α = 0, meaning that the
πMARIO controller provides robustness guarantees that the
state-constrained MPC does not, since we cannot use the
constraint to construct a supermartingale from the system.

Thus, the πMARIO controller, which can be considered as
a stochastic formalization of the πMPC+DCBF, immediately
benefits from inherent robustness guarantees of Thms. 5 or 6
which do not apply to the stochastic reformulation of the πMPC

controller with α = 0. Instead, most stochastic MPC methods
rely on a quantile-based chance constraint [30], [75] which
can require significantly more distribution information than
the supermartingale methods which are based exclusively on
the first-moment. Similar to how the ISSf property of Sec. IV
provides robust safety guarantees when only the undisturbed
model of the system is known, and tube MPC methods
require knowledge of the tube size to provide a guarantee, the
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guarantees of this section ensure bounded failure probability
using only the first moment of safety. In contrast, quantile-
based methods would require significantly more distributional
information. Additionally, because the supermartingale meth-
ods rely on an inequality on the expectation, they can be
thought of as distributionally robust, since the guarantees hold
for all distributions which satisfy the first-moment property.
This robustness is achieved at the cost of looseness of the
probability bound.

Notably, enforcing the expectation-based DCBF constraint
(22) may require additional consideration since the dynamics
and safety function h may reshape the disturbance distribution.
In this case, sampling-based methods may be used to approx-
imate the expectation constraint, or the following proposition
can be used to account for the effect of Jensen’s inequality in
the DCBF constraint:

Proposition 2. Assume that the dynamics are affine with
respect to the disturbance, xk+1 = F(xk,uk)+dk. Consider
two cases for the properties of h : Rnx → R:

1) If h is convex, then

h(F(xk,uk) + E[d|Fk]) ≥ αh(xk) (28)
=⇒ E[h(F(xk,uk) + d)|Fk] ≥ αh(xk) (29)

2) If h is concave, twice continuously-differentiable,
and has a bounded second-derivative norm (i.e.,
supx∈Rnx ∥∇2h(x)∥ ≤ λmax for some λmax ≥ 0), then

h(F(xk,uk)+E[d|Fk])−
λmax

2
tr(cov(d)) ≥ αh(xk)

=⇒ E[h(F(xk,uk) + d)|Fk] ≥ αh(xk) (30)

Proof. For (1) apply Jenson’s inequality for the convex func-
tion h. For (2) see [15, Thm. 6].

This proposition provides two methods for practically enforc-
ing the necessary constraint to achieve safety in certain cir-
cumstances. Since only the first constraint along the planning
horizon of the MARIO FTOCP is leveraged for the trajectory
long guarantees of Thms. 5 and 6, further simplifications can
be made for i > 1 to ease the computational burden. While
this may reduce the optimality of the πMARIO controller, it will
still maintain its probabilistic guarantees.

Furthermore, we note that practically implementing the
πMARIO controller may be difficult, as it requires propagation
of compounding uncertainty through the dynamics, cost, and
the DCBF h. With this practical applicability in mind, we
introduce a more computationally tractable version of the
πMARIO controller in the next section that also considers state
uncertainty.

VII. MPC+DCBF WITH STATE UNCERTAINTY

Finally, we consider systems with stochastic dynamic un-
certainty as in (18) where we do not have direct access to the
state (the maximal uncertainty discussed in the work). Instead
we only have indirect access through noisy measurements:

yk = M(xk,vk), vk ∼ V(xk:0) (31)

where, yk ∈ Rny is a system measurement, vk is a Fk+1-
measurable random variable taking values in Rnv that repre-
sents the measurement noise, and M : Rnx × Rnv → Rny is
the system’s measurement function that obtains measurement
yk given the state xk; for example, M could be a camera that
produces a noisy image yk given the current position xk and
the noise vk.

In the context of real-world robotics and control systems,
we never have access to the true state of the system due to
uncertainties in our measurements. Because of this inability
to access the true state, the state evolution of xk becomes a
partially observable Markov decision process (POMDP), and
it is common to seek guarantees on the belief-state distribution
instead of guarantees on the true state [47], [76]. In this work
we will first seek a bound on the belief space safety and then
extend this to the true state through a union bounding method.

Since we are considering systems where we do not know
the true state xk, we now discuss a filtration generated by the
σ−algebra over only the observations, yk; that is, we consider
Gk = σ(yk:0) which is contained in the filtration Fk, i.e.,
Gk ⊂ Fk. Since the inputs are selected based on the system
measurements, the input vector uk is also Gk-measurable. On
the other hand, since the true state of the system xk is not
Gk-measurable, we turn our attention to the expectation of the
state conditioned on the measurement-based filtration Gk. We
will use the previously introduced martingale constructions to
make safety guarantees with respect to the expected value of
the belief state:

x̂k|k−1 ≜ E[ xk | Gk−1 ], x̂k|k ≜ E[ xk | Gk ], (32)

where, as in a Kalman filter [77], x̂k|k−1 is the expected
value of the predicted belief state at the next step and x̂k|k
is the expected value of the updated belief state after a new
measurement has been taken.

Next we seek to produce risk-based bounds on the K-step
exit probability of the expected value of the belief state:

Pu(K, x̂0|0) ≜ P{ x̂k|k /∈ C for some k ≤ K }, (33)

where the dynamics for x̂k|k include both the system dynamics
for the prediction propagation to x̂k+1|k and the system
measurement update step to obtain x̂k+1|k+1 once yk+1 is
measured.

To bound (33) we consider the following condition on
h(x̂k+1|k+1) in order to generate stochastic guarantees:

E[ h(x̂k+1|k+1) | Gk ] ≥ αh(x̂k|k), (34)

for some α ∈ (0, 1) where the expectation-based DTCBF
condition in (22) is now applied to the expected value of the
updated belief state.

A. SUP-MARIO for Belief-Space Safety
To practically implement constraint (34) and use it in con-

junction with the results from Sec. VI to generate guarantees,
we assume that the dynamics and measurements are linear:

xk+1 = Axk +Buk + dk (35)
yk = Cxk + vk (36)
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and that the disturbance dk and noise vk are sampled from
zero-mean distributions10.

To construct an FTOCP for this system, instead of constrain-
ing the initial state in the plan to be the current state ξ0 = xk,
which we do not have access to, we constrain it to the current
expected belief state ξ0 = x̂k|k. Using this adjustment and
the linear dynamics assumption we have the State-Uncertain
Probabilistic Model-Aware Risk Informed Optimization (SUP-
MARIO) optimization problem:

min
ξ0:N∈Rnx

ν0:N−1∈Rnu

N−1∑
i=0

c(ξi,νi) + V (ξN ) (SUP-MARIO)

s.t. ξi+1 = Aξi +Bνi, ∀i ∈ {0, . . . , N − 1}
h(ξi+1) ≥ αh(ξi), ∀i ∈ {0, . . . , N − 1}
νk ∈ U , ∀i ∈ {0, . . . , N − 1}
ξ0 = x̂k|k

for some α ∈ (0, 1) which can be used as before to define the
SUP-MARIO controller πSUP-MARIO(xk) = [ν∗

0 (xk)].
Notably, whereas πMARIO may be difficult to implement,

the implementation of πSUP-MARIO is straightforward. This is
because πSUP-MARIO relies on the expected-value of the state
to implement the FTOCP+DCBF problem11. It therefore does
not require the uncertainty distributions be propagated across
the planning horizon.

Next, we show that this simple-to-implement controller still
satisfies the DCBF condition in expectation (34). In particular,
the πSUP-MARIO controller satisfies the desired DCBF constraint
on the safety of the belief state (34), which allows it to leverage
Thm. 5 and/or Thm. 6 to provide bounds on the K−step exit
probability of the belief state (33).

Theorem 7. For systems with linear dynamics (35), linear
measurements (36), and zero-mean disturbance dk and mea-
surement noise vk, if h : Rnx → R is convex12, then
the closed-loop system (18) with the πSUP-MARIO controller
satisfies:

E[ h(x̂k+1|k+1) | Gk ] ≥ αh(x̂k|k) (37)

A proof of Thm. 7 can be found in Appx. C.
Since the πSUP-MARIO satisfies condition (34), Thms. 5 and 6

can be used to guarantee bounds on the K-step exit probability
of x̂k|k when their respective hypotheses regarding bounds
on h or step-wise and predictable quadratic variation (PQV)
bounds are satisfied.

B. Ground Truth Safety Guarantees

Finally, to analyze the safety achieved by the πSUP-MARIO

controller with respect to the true state x, we can leverage

10To prove Thm. 7 we assume zero mean, but any bias can also be accounted
for by modeling it and including it as a part of the nominal dynamics and
measurement model.

11The relationship between the FTOCP+DCBF and SUP-MARIO is similar
to that between a linear quadratic regulator (LQR) and a linear quadratic
guassian (LQG) controller.

12When h is concave, the method in Prop. 2 can be used. Alternatively,
sampling-based methods can be used to approximate E[h(x)] from h(E[x]).

tail-bounding methods like Cantelli’s inequality (one-sided
Chebychev’s inequality) in conjunction with the union bound
(Boole’s inequality) to extend beyond the K−step exit prob-
ability bounds on x̂k|k.

Using Cantelli’s inequality we can extend a safety guarantee
on the expected belief state x̂k|k to a safety guarantee on the
true state xk.

Theorem 8. Assume that the variance of safety is bounded as
Var(h(xk)) ≤ σh for some σh > 0, all xk, and all k ≤ K
and that h is convex. If the system achieves the K-step exit
probability Pu(K, x̂0) ≤ ϵ for the belief state x̂k|k, then failure
probability for the CδC for the true state x and some δC ≥ 0
is bounded as:

P{h(xk) ≤ −δC for some k ≤ K} (38)

≤ ϵ+ (1 +K)

(
σ2
h

σ2
h + δ2C

)
.

This final theorem allows us to place theoretical guarantees on
the probability that the true state of the system will be safe
despite indirect knowledge of x due to noisy measurements.
Its proof can be found in Appx. D.

VIII. QUADROTOR EXPERIMENTS

In this section we apply the πSUP-MARIO controller to a
quadrotor robot to achieve dynamic obstacle avoidance. To do
this we consider the following model of the quadrotor [72]:

d

dt

pq
v


︸ ︷︷ ︸

ẋ

=

 v
0

−ezg

+

 0 0
0 I

1
mR(q)ez 0

[
τ
ω

]
︸︷︷︸
u

, (39)

where the state x = (p ∈ R3,q ∈ S3,v ∈ R3) represents
the position, orientation, and velocity of the system. Here g
represents gravity, m = 1.12 kg is the robot’s mass, and the
system has inputs of angular rate ω ∈ R3 and thrust force
τ ∈ R≥0. Here ez is a unit vector in the z-direction and R :
S3 → SO(3) maps the quaternion representation of orientation
to the respective rotation matrix.

To control the quadrotor robot we use a hierarchical control
scheme that consists of three layers. At the lowest layer we use
an opensource Betaflight controller to track commanded thrust
and angle rates at 8 kHz. At the mid-layer, we implement
the geometric tracking controller presented in [78] at 800
Hz to generate thrust and angle rate commands based on
desired position trajectories. Finally, we generate twice con-
tinuously differentiable position outputs using the πSUP-MARIO

controllerat 20 Hz, where the linear model used in the SUP-
MARIO FTOCP is:[

pk+1

vk+1

]
︸ ︷︷ ︸

ξk+1

=

[
I ∆tI
0 I

] [
pk

vk

]
︸ ︷︷ ︸
ξk

+

[
∆2

t

2 I
∆t

] [
ak

]︸︷︷︸
νk

. (40)

To limit the angle rate commands produced by the tracking
controller and ensure smoother flight, we add a constraint on
the system jerk by bounding the difference between the current
and next acceleration inputs in the FTOCP and SUP+MARIO
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problems. Furthermore, to avoid infeasibility during flight, we
implement these finite-difference-based jerk bounds as soft
constraints with slack variables.

Although the tracking controller can be used to establish the
differential flatness of the quadrotor system [79] that ensures
the (almost everywhere) tracking of the desired trajectories,
any resulting error in the model that occurs transiently due
to initial condition error, angle-rate convergence, or lack of
smoothness between solution updates can be analyzed through
the robustness frameworks presented in Sections IV and VI.

For safety, we consider collision avoidance between our
quadrotor drone and a dynamic projectile obstacle. Mathemat-
ically we define this safety using the function:

h0(x) = ∥p̃x:y∥ − r (41)

where p̃ represents the relative position of the quadrotor
with respect to the obstacle, the subscript indices indicate the
extraction of the first two elements of p̃, and r is the radius
of the obstacle, which accounts for the maximum dimension
of the quadrotor. The 0-superlevel set of h0 functionally
defines safety for our quadrotor system as staying outside the
planar (x, y) region containing the obstacle. To implement
the horizon-based planning of the MPC and SUP-MARIO
controllers, we use a constant-velocity model of the dynamic
obstacle.

While h0(x) is used in the implementations of the πMPC

with state constraints, we instead use a higher-order CBF
(HOCBF) extension [56] to implement the πDCBF-OP and
πSUP-MARIO controllers:

h(x) =
p̃⊤
x:y

∥p̃x:y∥
˙̃px:y︸ ︷︷ ︸

ḣ0(x)

+γh0(x) (42)

for a γ > 0. This is a relative degree 1 DCBF designed using
the HOCBF method [57] for the double integrator model used
in the πSUP-MARIO controller. While the use of h as in (42) in
place of h0 is not theoretically necessary, and in fact moves
from a convex h0 to a non-convex h, we find that it provides
significantly better closed-loop system behavior.

An additional DCBF constraint was also implemented in
the πMPC and πSUP-MARIO controllers to avoid collisions with
the ground.

A. Simulation Experiments

In simulation we compare the effectiveness of the πDCBF-OP,
πMPC, and πSUP-MARIO controllers13 at achieving dynamic
collision avoidance for the quadrotor system (39). The results
of this comparison simulation can be seen in Fig. 6.

To approximate real-world uncertainty, random noise was
added to both the state and obstacle values and measurements
and Kalman filters were implemented to estimate both the
robot and obstacle states. The goal position for each controller

13To practically implement the πDCBF-OP we added an ISSf-CBF [5] term to
account for model uncertainty. This term was not added in the implmentation
of the πSUP-MARIO controller.

MPC-DCBF

collision line

DCBF-OP
State Constraint
Obstacle

Fig. 6. Simulated demonstrations of the πMPC, πDCBF-OP, and πSUP-MARIO

controllers performing a dynamical obstacle avoidance task. (Top) The planar
(x, y) trajectories for the obstacle (black), DCBF-OP (red), MPC+DCBF
(blue), and MPC with state constraints (green). (Middle) The distance to
the goal through time for each controller. (Bottom) The signed-distance
function representing collision between the drone and the obstacle. Aided
by their planning horizons, the πMPC controller with state constraints and
the πSUP-MARIO controller both produce trajectories with relatively small
deviations away from the goal point (0, 0). Meanwhile, the πDCBF-OP and
πSUP-MARIO controllers manage to avoid collisions, but the πMPC controller
results in a safety failure due to a the model-mismatch and lack of robustness.
Here the DCBF-OP achieves safety during the scenario, but its myopic,
pointwise optimization does so by moving in the same direction as the obstacle
whereas the πSUP-MARIO controller optimizes performance while achieving
safety by moving in a direction which is predominantly orthogonal to the
obstacle’s velocity. Videos of these simulations can be found at [10].

was (0, 0) which the MPC and SUP-MARIO controllers
tracked using a quadratic receding horizon cost. The DCBF
controller tracked the goal position using a proportional-
derivative nominal controller which was pointwise modified
to enforce safety. The obstacle was a sphere with radius
robs = 0.15 m that tracked a trajectory that passed through
(0, 0) which was both the robot’s initial and goal position.

While the πDCBF-OP and πSUP-MARIO controllers both achieve
safety, the myopia of the DCBF-OP safety filter causes it to
produce trajectories that are safe but highly suboptimal by
moving in the same direction as the obstacle, resulting in
significant departure from the goal position. The πMPC con-
troller with state constraints achieves performant behavior by
planning a trajectory that moves perpendicular to the obstacle
path; however, it lacks sufficient robustness resulting in a
safety failure in simulation. Finally, the πSUP-MARIO controller
combines the benefits of both methods and achieves safe and
performant behavior, effectively side-stepping with sufficient
margin to avoid collision.

The simulations were performed in a ROS-based simulation
environment which models the full-robot multi-layer control
and communication system.
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t = 1.60 t = 2.13 t = 4.10 t = 5.10

Fig. 7. Experimental demonstration of the πSUP-MARIO controller on a quadrotor drone with onboard dynamic obstacle detection, state estimation, and
avoidance. (Top) The top two rows show the scene through time from the perspective of an external camera. The drone starts in the top left and a red ball
moves towards it. The drone then moves back and to the side to avoid a collision. (Middle) The middle two rows show the scene from the robot’s perspective.
The obstacle mask, as seen by the robot, is shown in yellow and can be seen to have significant noise with an innacurate mask at t = 0.58, significant
motion blur, and missing detections at t = 0.90 and 0.98. (Bottom) The bottom plots show the system’s safety value h(x) in orange (which never drops
below zero), the drone position, the commanded acceleration, and the obstacle’s estimated position and velocity. The different components of these vectors
are shown as x in red, y in green, and z in blue. The maximum velocity of the obstacle during the experiment was measured using a motion capture system
to be 6.24 m/s. The video of this experiment can be found at the link in [10].

B. Hardware Setup

The quadrotor hardware platform is built on a Chimera 7”
frame with four iFlight XING X2806.5 1300KV brushless
motors, a T-Motor F55 A Prop II 4-in-1 ESC, a MAMBA
BASIC F722 running a betaflight flight controller, a Teensy
4.1 microcontroller, a VectorNav VN-200 IMU, an Intel Re-
alSense D455 depth camera, and a NVIDIA Jetson Orin NX
computer. We utilize the IMU and its internal Kalman filter for
orientation state estimation, and we use an OptiTrack motion

capture system for global position measurements from which
velocities are also estimated via finite-difference and a low-
pass filter. A diagram of the quadrotor is provided in Fig. 8.

The flight controller is used to track desired angle rate and
thrust commands generated by the Jetson Orin NX computer.
With the expception of the global position measurements
provided by the motion capture system over WiFi, all compu-
tations for image processing, state estimation, and control are
performed onboard. The environment sensing system utilizes
an RGBd video stream (4 channels: 3 color channels and 1
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Fig. 8. A diagram of the quadrotor robot used in the experiments in Section
VIII and Figs. 1 and 7.

depth channel) generated by the Intel Realsense D455 stereo
depth camera. To ensure time alignment between the color and
depth images, the stereo image used to calculate the depth is
simultaneously used as the RGB image, and the active infrared
projector is disabled. To segment the obstacle within an image
and track it between frames, we utilize the efficient Track-
Anything-Model (efficientTAM) [62], a small distillation of
Meta’s Segment-Anything-Model [63], which achieves faster
than 11 Hz image segmentation and tracking on the Jetson
Orin NX. To identify obstacles, we initialize the efficientTAM
model with prompts (mouse clicks on an image) which identify
key points in the image. For the obstacle we predominately
used the red ball shown in Figs. 1 and 7, but the experimental
video found at the link in [10] also shows a demonstration
of the robot performing state estimation on and avoiding a
toy green turtle shell. This demonstration of the SUP-MARIO
controller dodging a green turtle shell can be seen in Fig. 9.

Once a segmentation mask is obtained for an RGBd image,
the intrinsic camera matrix and the geometry of the robot are
used to generate 3D vectors representing the relative position
of the pixelized masked image contents from the robot body
reference frame. We then perform a weighted averaging of
those vectors based on their distance to the center of the mask
to estimate the relative position of the obstacle centroid with
respect to the camera frame. This relative position is converted
to a global frame using the time-synchronized drone state.
Given this position estimate, a Kalman filter for a double
integrator system is used to estimate the relative obstacle
position p̃ and velocity ˙̃p which relate to system safety via
h0 in (41) and h in (42).

Finally, the πSUP-MARIO controller is implemented at 20 Hz
with a horizon length of N = 20 and a ∆t = 0.05 sec, for a
total real-time horizon length of 1 second. To solve the non-
convex optimization problem we use a sequential quadratic
programming (SQP) method in a real-time iteration (RTI)
implementation [80]. The DCBF-OP and MPC controllers
were not demonstrated on hardware due to practical safety
concerns with the simulated trajectories in Fig. 6. Results from
these experiments can be seen in Figs. 1 and 7 and a video
can be found at the link in [10] where the quadrotor drone
successfully avoids dynamic projectile obstacles over several
trials. For the experiment shown in Fig. 7, motion capture
markers were added to the obstacle to provide ground truth
state information, but this ground truth was not used for real-

Fig. 9. The quadrotor robot avoiding a collision with the toy turtle shell.

time collision avoidance. These ground truth measurements
only used to obtain the true obstacle velocities, and from
this we know that the quadrotor robot successfully dodged
obstacles moving at upwards of 6.24 m/s, overcoming the
significant uncertainty resulting from the noisy, low-frame-
rate (11 Hz) environmental perception and from its uncertain,
reduced-order-model of its dynamics.

IX. CONCLUSION

In this work we studied the combination of two predom-
inant control techniques: model predictive control (MPC)
and control barrier function (CBF) based safety filters. By
combining the cost function and horizon-based planning of
the MPC problem with the DCBF-based safety constraint,
we found both practical and theoretical benefits in nominal
operation, operation under bounded uncertainty, and operation
under (potentially unbounded) stochastic state and dynamic
uncertainty, that extend the capabilities beyond either of the
individual methods. We show that the unified MPC+DCBF
controller displays favorable safety, performance, and closed-
loop feasibility properties, and we demonstrate the utility of
this controller via quadrupedal and quadrotor experiments for
dynamic obstacle avoidance.

There are several avenues for future work that explore the
current limitations of these methods. Firstly, although we can
create probabilistic guarantees of safety using real-time con-
trollers, these probability bounds are often quite loose. Future
work will examine extensions beyond martingale concentra-
tion, Cantelli’s, and Boole’s inequalities that improve the-
oretical guarantees without sacrificing real-time capabilities.
Secondly, significant work should be invested in defining the
functions h given sensor output, developing methods for con-
verting sensor information to scene understanding and finally
to mathematical representations of safety. Thirdly, the methods
presented in this work rely heavily on the use of system models
F(x,u). While the analysis here provides an understanding
when this model is not known exactly, the degradation of
this model knowledge has significant effects on the system
guarantees. Future work will explore how these methods can
be extended to learned dynamics models, particularly how the
probabilistic guarantees can be retained for learned models
and how safety constraints can be embedded in the training
phase of reinforcement learning (RL) policies to improve
optimality without the need for MPC’s online horizon-based
calculations. Finally, the examples presented here generally
require solving non-convex optimization problems. While this
work utilized sequential quadratic programming (SQP) and
real-time iteration (RTI) methods, the solutions generated
by these methods can be suboptimal or even unstable and
additional work should investigate improved solution methods
for the MPC+DCBF controllers.
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tubes in model predictive control with probabilistic constraints,” IEEE
Transactions on Automatic Control, vol. 56, no. 1, pp. 194–200, 2011.

[40] B. Kouvaritakis, M. Cannon, S. V. Raković, and Q. Cheng, “Explicit use
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APPENDIX

A. Proof of Prop. 1

Proof. Consider the input sequence that decreases safety as
much as possible at each step while satisfying the constraints
along the horizon of length N . According to the assumption in
(5), the worst-case safety decrement at each step is −δ and,
according to assumption (6), it is possible the controller to
make h decrease by as little as −Nϵ along the trajectory. Thus,
if safety decays by −δ for k − 1 steps, the safety constraints
are feasible at time k if:

0 ≤ h(xk)−Nϵ = h(x0)− δ(k − 1)−Nϵ. (43)

Solving for k yields: k ≤ h(x0)−Nϵ
δ + 1. Since this feasibility

is guaranteed for the worst-case input sequence, this bound
holds regardless of the cost in the FTOCP problem.

B. Proof of Thm. 2

Proof. Consider the input sequence that decreases safety as
much as possible at each step while satisfying the constraints
along the horizon of length N . According to the assumption
in (5), the worst-case safety decrement when the constraints
are all inactive is −δ and, according to assumption (6), it
is possible for h to decrease by as little as −Nϵ along the
trajectory. Thus, safety can continue decrementing by −δ until
the sequence [−δ,−ϵ, . . . ,−ϵ] violates a DCBF constraint.
Under this worst-case sequence, the first modifications occur
at step k+1 when either the first or last constraint is violated:

−δ < (α− 1)(h(x0)− k1δ) (44)
−ϵ < (α− 1)(h(x0)− (k2 + 1)δ − (N − 2)ϵ) (45)

This is because the first constraint can modify the larger −δ
decrement whereas the last constraint is the tightest since
safety is positive and only decrease along the horizon.

Rearranging for the times k1 and k2 which trigger input
modifications caused by (44) and (45) respectively yields:

k1 >
h(x0)

δ
− 1

1− α
(46)

k2 >
h(x0)

δ
− 1−

(
N − 2 +

1

1− α

)
ϵ

δ
(47)
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The case in (46) becomes true first since

1

1− α
≥ 1+

(
(N − 2) +

1

1− α

)
ϵ

δ
=

δ + (N − 2)ϵ

δ + ϵ
(48)

was assumed in the theorem statement.
Thus, the system can apply −δ as a safety decrement kδ =

max
{⌊

h(x0)
δ − 1

1−α

⌋
, 0
}

times before the DCBF constraint
becomes active. After this point, the input must be modified
in order to satisfy the first constraint. If kδ = 0, then the input
is modified at the first step.

Now that the first input must be modified to satisfy
the first constraint, consider the new worst-case and max-
imally feasible planned safety decrement sequence [(α −
1)h(xk),−ϵ, . . . ,−ϵ]. Here assumption (6) ensures that the
first decrement can be achieved. Using this sequence until
k − 1, the controller is feasible at step k if the sequence
sequence of all −ϵ satisfies the last (and tightest) constraint:

−ϵ ≥ (α− 1) (h(xk)− ϵ(N − 1)) (49)

= (α− 1)
(
αk−1−kδh(xkδ

)− ϵ(N − 1)
)

(50)

= (α− 1)
(
αk−1−kδ(h(x0)− kδδ)− ϵ(N − 1)

)
(51)

Rearranging for k yields:

k ≤ logα

ϵ
(

1
1−α +N − 1

)
h(x0)− kδδ

+ 1 + kδ, (52)

as claimed in the theorem statement.

C. Proof of Thm. 7

Proof. At i = 0, the safety constraint implies

0 ≥ −h(ξ1) + αh(ξ0) (53)
= −(Aξ0 +Bν∗

0 (x̂k|k)) + αh(ξ0) (54)
= −h(Ax̂k|k +Buk) + αh(x̂k|k) (55)
= −h(Ax̂k|k +Buk + E[dk]) + αh(x̂k|k) (56)
= −h(E[Ax+Buk + dk | Gk]) + αh(x̂k|k) (57)
= −h(E[xk+1|Gk]) + αh(xk) (58)
= −h(E[E[xk+1|Gk+1]|Gk]) + αh(x̂k|k) (59)
= −h(E[x̂k+1|k+1|Gk]) + αh(x̂k|k) (60)
≥ −E[ h(x̂k+1|k+1) | Gk ] + αh(x̂k|k) (61)
=⇒ E[ h(x̂k+1|k+1) | Gk] ≥ αh(x̂k|k). (62)

Here, (53) is enforced by the controller’s safety constraint,
(54) is enforced by the controller’s dynamics constraint, (55)
is a result of using the first planned action ν∗

0 (x̂k|k) as the
current input uk, (56) is a result of the zero mean assumption
on the disturbance dk, (57) is through the definition of x̂k|k
along with the linearity of expectation and the full-knowledge
of uk and dk given Gk. Next, (59) is a result of the assumed
linearity of the measurement function and the tower rule, and
(60) is by definition of x̂k+1|k+1. Finally, (61) is a result of
Jensen’s inequality since h is to be convex and (62) comes
from rearranging terms.

D. Proof of Thm. 8

Before proving Thm. 8, we provide Cantelli’s inequality as
a Lemma for reference.

Lemma 1 (Cantelli’s Inequality [70]). For any real-valued
random variable X , P {X − E[X] ≤ −λ} ≤ σ2

σ2+λ2 for any
λ > 0 and where σ ≥ 0 is the variance of X .

Next we provide the proof of Thm. 8 which leverages
this lemma to extend belief-based safety guarantees to safety
guarantees for the true state of the system even when relying
on uncertain measurements.

Proof. Consider the events :

A = {h(x̂k|k) < 0 for some k ≤ K}, (63)

A = {E[h(x)|Gk] < 0 for some k ≤ K}, (64)
Bk = {h(xk) ≤ E[h(xk) | Gk]− δC}. (65)

Since h is convex, Jensen’s inequality and the definition
x̂k|k ≜ E[ xk | Gk ] establish the containment A ⊂ A
and the probability bound P{A} ≤ P{A}. Next, consider
the combined event: U =

{
A ∪

{
∪K
k=0Bk

}}
. Note that U c,

the complement of U , is the event that E[h(x)|Gk] ≥ 0 and
h(xk) > E[h(xk)|Gk]− δ for all k ∈ {0, . . . ,K}. Thus U c is
a sufficient condition for h(xk) ≥ −δC for all k ∈ {0, . . . ,K}
and U is a necessary condition for h(xk) < −δC for some
k ≤ K. From this, we can establish the probability bounds:

P{h(xk) ≤ −δC for some k ≤ K} ≤ P{U} (66)

≤ P{A}+
K∑
i=0

P{Bi} (67)

≤ P{A}+
K∑
i=0

P{Bi} ≤ ϵ+

K∑
i=0

P{Bi} (68)

≤ ϵ+ (1 +N)

(
σ2
h

σ2
h + δ2

)
(69)

The first bound is due to the fact that U is a necessary
condition for the true state to be unsafe with respect to
CδC for some k ≤ K, the second bound is an application
of Boole’s inequality [70], the third bound is due to the
containment A ⊂ A, the fourth bound is from the assumed
bound on Pu(K, x̂0) ≤ ϵ, and the final bound is an application
of Cantelli’s Inequality (Lem. 1) with the assumption that
Var(h(xk)|Gk) ≤ σh.
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