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Abstract— With the increasing prevalence of complex vision
sensing methods for use in obstacle identification and state es-
timation, characterizing environment-dependent measurement
errors has become a difficult and essential part of modern
robotics. This paper presents a self-supervised learning ap-
proach to safety-critical control. In particular, the uncertainty
associated with stereo vision is estimated, and adapted online
to new visual environments, wherein this estimate is leveraged
in a safety-critical controller in a robust fashion. To this
end, we propose an algorithm that exploits the structure of
stereo-vision to learn an uncertainty estimate without the need
for ground-truth data. We then robustify existing Control
Barrier Function-based controllers to provide safety in the
presence of this uncertainty estimate. We demonstrate the
efficacy of our method on a quadrupedal robot in a variety of
environments. When not using our method safety is violated.
With offline training alone we observe the robot is safe, but
overly-conservative. With our online method the quadruped
remains safe and conservatism is reduced.

I. INTRODUCTION

Accounting for vision-based uncertainty is particularly
important for modern safety-critical robotic applications such
as autonomous vehicles, health care, and manufacturing [1].
The importance of safety for these systems demands that
their controllers are designed to provide robust safety in the
presence uncertainty. Control Barrier Functions (CBFs) [2],
[3] have become a popular tool for achieving provable safety.
However, standard CBF theory requires accurate state esti-
mation. This motivates the need for a method that provides
safety when using stereoscopic sensor measurements that are
inherently noisy.

Computer vision has become an important tool in robotics
for sensing environments and identifying obstacles. They are
often an integral component of robotics applications such as
simultaneous localization and mapping (SLAM [4]). Despite
their utility and ubiquity, using vision sensors to achieve
robust safety is difficult due to the complex environment-
dependent error that they generate. For example, error pat-
terns are highly correlated with the textures and appearance
of a scene. Supervised methods can identify and model
error as it affects the CBF [5], [6], [7], [8], [9]; however,
supervised approaches require ground-truth training data that
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Fig. 1. These space-time images display our quadrupedal robot throughout
the course of an experiment. The robot is considered safe if it remains left of
the yellow line. The standard control barrier function (CBF) condition fails
to keep the robot safe due to errors in stereo vision; the robust CBF condition
keeps the robot safe, but is conservative; and our proposed method, Robust
CBFs with Online Uncertainty Estimation, keeps the robot safe without
remaining overly conservative.

may be difficult or impossible to obtain. Additionally, such
frameworks often inaccurately estimate errors in regions of
the state space that were under-sampled or generally not
present in the training set; training on indoor environments
or synthetic data with easy-to-access ground truth often does
not translate well to outdoor environments.

In this paper, we focus on two main challenges related to
automatic vision-based safety critical control: (i) the percep-
tion of the safe region is uncertain, and (ii) the uncertainty is
often unknown and may depend heavily on the environment.
We tackle these issues in the context of stereo vision-based
obstacle avoidance on a quadrupedal robot. Namely, our
goal is to avoid obstacles seen in stereo cameras mounted
on the robot, while taking into account that vision-based
measurements are uncertain. We use a multibaseline stereo
vision system on the robot to record stereo images. Then,
we determine the position of the objects associated with
each image pixel, and subsequently infer the uncertainty
of these positions through a self-supervised error estimation
algorithm that frames the problem as online learning [10].
Online learning frameworks have shown success in a variety
of robotic applications [11], [12], [13] Finally, we use the
position and uncertainty estimates for safety critical control,



Fig. 2. The overarching structure of our approach. It begins on the bottom
right by capturing three time-synchronized images that are then fed into an
uncertainty estimation pipeline and also used to generate a 3D point cloud.
There are three possible CBF filters that result in the three possible robot
realizations shown. From top to bottom, the standard filter only takes into
account the noisy point-cloud in avoiding obstacles. The robust CBF safety
filters use the estimate of the uncertainty P to compensate for noise in the
point cloud. Finally, the “Robust with Retraining” filter refines the model
of uncertainty to the current environment in real-time.

wherein we achieve robust safety via CBFs. A visualization
of this method can be found in Fig. 2.

The contributions of this work are three-fold. First, we
present and evaluate an online, self-supervised method for
characterizing the uncertainty of disparity errors generated by
stereo vision algorithms in novel environments (Section II).
Second, we develop a robustified CBF-based control method
for utilizing this error estimate for obstacle avoidance in
robotic systems (Section III). And third, we demonstrate the
proposed methods of error estimation and obstacle avoidance
on a quadrupedal robot operating in real time (Section IV).

II. STEREO VISION UNCERTAINTY
QUANTIFICATION

We begin by revisiting stereo vision-based depth esti-
mation. We then propose an approach for learning the
uncertainty of a black box stereo-matching algorithm. The
proposed self-supervised learning approach can be trained
online and takes advantage of geometric structure in stereo
disparity maps so as not to require ground truth data.

A. Background in Stereo Vision

Stereo vision is a popular tool for determining depth
from images. These methods compute a disparity: the shift
observed in an object’s projection onto two camera planes.
Using a geometric understanding of the camera setup, pixel-
based disparity maps can be converted to depth maps.
Errors in the final depth-map result from a combination
of pixel-mismatch in disparity estimation and error in the
camera parameters used to convert from disparity to depth.
The errors in the intrinsic and extrinsic parameters of the
camera are usually small and their effect on the resulting
depth distribution is easy to compute. On the other hand,
pixel matching errors are much larger and the result of a
much more complicated stereo matching procedure whose

effect on the resulting disparity is difficult to quantify and
environment-dependent.

For standard stereo vision we adopt the model of [14]
for two cameras (left and right) and assume that they are
perfectly rectified, vertically aligned and evenly spaced with
known distance b ∈ R>0 between each camera. Pixel coordi-
nates within an image are given by the tuple p , (u, v) ∈ K,
where K , {0, . . . ,W} × {0, . . . ,H} for image width
W ∈ N>0 and image height H ∈ N>0.

Stereo algorithms such as Block Matching, Semi-Global
Block Matching, and Efficient Large-Scale Stereo [15] com-
pute disparities by determining the discrete pixel distance
between matching regions of two images. Since the disparity
represents a shift between pixels of two images, the measured
disparity d̂ must be a finite integer value. Assuming that
the true disparity d is a finite integer implies that the error
e , d̂ − d must also be a finite integer. Prior work has
been done to interpolate disparities for non-integer subpixel
accuracy [16]; however, we restrict our attention to integer
disparity values to highlight the error in pixel-matching.

B. Self-supervised Error Estimation

To learn the error in disparity, we introduce a three-camera
multibaseline stereo system which produces multiple dispar-
ity maps that are related through simple functions; deviations
from the ideal relationship indicate error in the estimated
disparities. By analyzing the correlation of image appearance
with these errors, a function that estimates disparity error
from appearance is learned and used to specify state error-
bounds in real-time for use in a robustified CBF.

We introduce a three-element camera system, whose cen-
tral camera is assumed to be perfectly rectified and vertically
aligned with the other two cameras as shown in Fig. 2. This
third camera is placed between the left and right cameras
such that it has a baseline of b/2 with both. The three
cameras produce a time-synchronized grayscale image triple
(I1, I2, I3) where Ii ∈ NW×H for i ∈ 1, 2, 3 and 1, 2, 3
correspond with left, center, and right, respectively. The
disparity between any image pair (Ii, Ij) for i < j is
obtained using the stereo-vision algorithm D : NW×H ×
NW×H → ΓW×H , so that d̂i,j = D(Ii, Ij). Here, Γ ⊂ N≥0

is the set of possible disparity values.
Given the measurement d̂i,j , the error appears as follows

d̂i,j = di,j + ei,j with error distribution ei,j ∼ P(Ii, Ij).
Here, ei,j ∈ ΓW×H represents the error between the true
disparity di,j ∈ ΓW×H and the measured disparity d̂i,j ∈
ΓW×H . We model this error as a discrete random variable
with probability P(Ii, Ij) on Γ. This model of disparity
errors contrasts sharply with other common error models,
such as punctual observation, uniform observation, and Gaus-
sian observation [14], in that it accounts for the discrete
nature of stereo-pixel matching algorithms. If a ground-truth
measurement of di,j exists, then supervised learning methods
can be implemented to directly estimate this error term.
However, it is often the case that such ground-truth estimates
are unavailable; particularly when a domain transfer must
occur during operation. Thus we seek a general method to



estimate e for any black-box disparity algorithm without the
need for ground-truth disparity data.

We leverage the known geometric relationships between
the three cameras to learn a mapping between image ap-
pearance and disparity error uncertainty distribution that
can adapt during operation in new environments. Given a
multibaseline stereo system, if one ignores occlusions, it is
possible to completely reconstruct each disparity map from
the other two maps. The relationship to reconstruct d̂1,3

from d̂1,2 and d̂2,3 is shown in Algorithm 1; we denote this
reconstruction as d1,3 , d̂1,2 ⊕ d̂2,3.

Algorithm 1 Disparity Reconstruction: d1,3 = d̂1,2 ⊕ d̂2,3

1: d1,3 ← 0H×W
2: for v ∈ [1, ...,H] do
3: for u ∈ [1, ...,W ] do
4: û← n+ d̂1,2(u, v)

5: d1,3(u, v)← d̂1,2(u, v) + d̂2,3(u, v̂)
6: end for
7: end for

We use the reconstructed disparity d1,3 to learn the param-
eters θ of a function Pθ that approximates error distribution
P (refer to Algorithm 2). Since this method does not require
ground truth information, Algorithm 2 can be run online dur-
ing operation to adapt Pθ to new visual environments. Recall
that the disparity error, e1,3 is discrete in nature. Therefore,
the pixel-wise reconstruction error re(p) , ‖d̂p1,3 − d

p

1,3‖1
will also be discrete. For this reason, optimizing the loss
L reduces to a pixel-wise classification problem similar to
image segmentation. Thus, as is done in image segmentation,
we use pixel-wise cross entropy as the loss function L. This
method is shown in Algorithm 2. In Line 8, for each pixel p

Algorithm 2 Self-Supervised Stereo Error Estimation Adap-
tation

1: L← 0
2: while robot is running do
3: (I1, I2, I3)← Capture Current Frame
4: d̂1,2 ← D(I1, I2)

5: d̂2,3 ← D(I2, I3)

6: d̂1,3 ← D(I1, I3)

7: d1,3 ← d̂1,2 ⊕ d̂2,3

8: re(p)←
∣∣∣d̂p1,3 − dp1,3∣∣∣

9: L← − 1
H×W

∑
p E1(re(p))[logPθ(Ii, Ik)]

10: θt+1 ← θt − η ∂L∂θ
11: end while

of the disparity d̂1,3 the corresponding reconstruction error
is computed. The loss function in Line 9, then is equivalent
to the expected negative log likelihood of each pixel under
the proposed model Pθ. An example visualization of lines
3−8 can be found in Fig. 3. Although this algorithm focuses
on the reconstructed disparity d1,3, it can be easily extended

Fig. 3. Lines 3-8 of Algorithm 2 illustrated from left to right. Starting from
three time-synchronized images three pairwise disparities are computed as
shown in the middle column. Two of these disparities are used to build a
reconstruction of the third disparity shown in the top right which can then
be used to estimate the pixel-wise error of the stereo algorithm shown in the
bottom right image. These steps of the algorithm correctly identify that the
back of the closest chair is a high-error region without using ground truth
information. This information is used to learn a correspondence between
visual features and error distributions.

to similar reconstructions of d1,2 and d2,3.
Supervised methods have been used in the past to esti-

mate uncertainty in robotic applications by computing the
covariance of state estimates [17]. Our approach differs in
that we do not require ground truth and we take advantage
of the discrete structure of images to learn a discrete, rather
than a Gaussian, distribution, which is better suited to stereo
measurements.

III. SAFE VISION-BASED CONTROL
In this section we review Control Barrier Functions (CBFs)

[18] as a tool for guaranteeing the safety of dynamical
systems. We then propose CBFs that rely on the position
of pixels provided by stereoscopic sensing. Finally, we
incorporate the proposed self-supervised error estimates of
Section II to enforce robust safety.

A. Control Barrier Functions

First we give a brief introduction to CBFs which follows
our description in [19], where additional technical details
can be found. In this work we consider the safety of robotic
systems with control affine dynamics

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm, (1)

where x is the state of the system, u is the input,
f : Rn → Rn is the drift dynamics, and g : Rn → Rn×m is
the input matrix. We assume that f and g are locally Lips-
chitz continuous. Given a locally Lipschitz continuous state-
feedback controller k : Rn → Rm, the closed-loop dynamics
are governed by:

ẋ = f(x) + g(x)k(x). (2)

For any initial condition x(0) = x0 ∈ Rn there exists a
unique solution x(t) to (2), which we assume to exist
∀t ∈ [0,∞).

The notion of safety is formalized by defining a safe set
C ⊂ Rn in the state space that the system must remain within.
In particular, consider the set C as the 0-superlevel set of a
continuously differentiable function h : Rn → R:

C , {x ∈ Rn | h(x) ≥ 0}, (3)



where h(x) = 0 =⇒ ∂h
∂x (x) 6= 0 and C is non-empty

and has no isolated points. Safety is defined as the forward
invariance of C, i.e., if x0 ∈ C, then x(t) ∈ C for all t ≥ 0.

To synthesize controllers that ensure safety, we use Control
Barrier Functions (CBFs) [2] defined as follows:

Definition 1 (Control Barrier Function (CBF)). Let C ⊂ Rn
be a safe set given by (3). The function h is a Control Barrier
Function (CBF) for (1) on C if there exists γ ∈ K∞,e1 such
that for all x ∈ C:

sup
u∈Rm

ḣ(x,u) ,
∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

u ≥ −γ(h(x)),

(4)
where Lfh : Rn → R and Lgh : Rn → Rm are the Lie
derivatives of h with respect to f and g respectively.

A main result in [18], [20] relates CBFs to the safety of
the closed-loop system (2) with respect to C:

Theorem 1. Given a safe set C ⊂ Rn, if h is a CBF for
(1) on C, then any locally Lipschitz continuous controller
k : Rn → Rm satisfying

Lfh(x) + Lgh(x)k(x) ≥ −γ(h(x)) (5)

for all x ∈ C, renders the system (2) safe w.r.t. C.

Given a nominal (but not necessarily safe) locally Lips-
chitz continuous controller kd : Rn → Rm and a CBF h,
the CBF-Quadratic Program (CBF-QP) [2] is a controller
that guarantees the system’s safety:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −γ(h(x)).

B. Control Barrier Functions for Safe Vision-Based Control

Next we apply CBFs to achieve safe obstacle avoidance
for robotic systems based on stereo vision. First we construct
CBFs for safe vision-based control. Let ρp ∈ R3 represent
the true three-dimensional position of the portion of the scene
which generated pixel p. Using this, we can define a CBF
h : Rn × R3 → R that relies on both the state x and three
dimensional pixel position ρp. The pixel position is a geo-
metric function of the true disparity, ρp , T (x, r(p, dp1,3))
where r : N2 × N is the stereo reprojection function and
T : Rn × R3 → R3 is the transformation mapping from the
robot’s state and relative pixel position to pixel position.

In order to relate the output of the stereoscopic sensor with
safety, we make the following assumptions:

Assumption 1. The environment is static, so the time
derivative of the pixelized environment is zero: dρp

dt = 0
for all p ∈ K.

Assumption 2. Ensuring safety with respect to the true three
dimensional pixel locations is sufficient to ensure safety with
respect to the environment. That is, the safe set for the system
is given by:

CK = {x ∈ Rn | h(x, ρp) ≥ 0, ∀p ∈ K} (6)

1K∞,e denotes the set of extended class-K infinity functions, wherein
γ ∈ K∞,e satisfies γ : R → R is strictly increasing, γ(0) = 0, and
limr→∞ γ(r) =∞, limr→−∞ γ(r) = −∞.

where h : Rn × R3 → R is the CBF for pixel p.

Although it is not outlined in this work, Assumption 1 can
be relaxed to include moving environments by calculating
ḣ accordingly and estimating the motion of obstacles in
the environment. Assumption 2 simplifies the surrounding
environment from infinite- to finite-dimensional by assuming
that the environment is smooth between a sufficiently dense
coverage of pixels. It also implies that the system only has
to stay safe with respect to objects that can be seen in the
cameras’ field of view.2

Based on Assumptions 1 and 2 and Theorem 1, synthe-
sizing the control input u such that

Lfh(x, ρp) + Lgh(x, ρp)u ≥ −γ(h(x, ρp)), (7)

∀p ∈ K, is sufficient to guarantee safety. Considering each
pixel p ∈ K, however, may be computationally intractible,
therefore we seek a condition with fewer required constraints.

To combine the constraints, we apply Boolean composition
to each CBF h to produce a single nonsmooth CBF hns,

hns(x) , min
p∈K

h(x, ρp), (8)

and simply enforce the CBF constraint associated with the
pixels whose CBFs have the smallest value [21]. In particular,
to achieve safety it is sufficient to enforce only the constraints
whose indeces appear in the locally-encapsulating index set:

Λ = {p ∈ K : h(x, ρp) ≤ hns(x) + δ}, (9)

for some δ > 0, as stated formally below.

Theorem 2 ([21], Prop III.6). Let h : Rn × R3 → R3 be
a locally Lipschitz function and hns be as in (8). If there
exists a locally Lipschitz extended class K function γ and a
measurable and locally bounded controller k : Rn → Rm
that satisfies:

min
p∈Λ
{Lfh(x, ρp) + Lgh(x, ρp)k(x)} ≥ −γ(hns(x)). (10)

Then hns is a valid nonsmooth CBF and the closed loop
dynamics (2) with controller k are safe with respect to CK .

This theorem indicates that enforcing the CBF condition only
for the “least safe” pixel is sufficient to guarantee the safety
of the system.

C. Robustness to Uncertainty

Error in the disparity propagates to the controller in the
form of the measured 3D pixel position ρ̂p. The measured
value ρ̂p lies in a neighborhood Ep of the true value ρp,
which is characterized by the error distribution P(Ii, Ij). We
assume that the distribution P(Ii, Ij) is symmetric about the
measured value and define the pixelwise uncertainty set:

Ep ,
{
ρ ∈ R3

∣∣∣∣ ρ = T (x, r(p, ξ)), ξ ∈ Γ

Pθ(e1,3(p) < |ξ − d̂(p)|; I1, I3) ≥ σ

}
(11)

2The field of view aspect of Assumption 2 can be overcome by tracking
features that leave the frame as done in Simultaneous Localization and
Mapping (SLAM) algorithms [4].



where σ > 0 is a parameter defining the desired uncertainty
robustness.

To achieve safety, one must determine which pixels are
safety-critical given Ep and then enforce robust safety with
respect to those pixels. The safety-critical pixels can be de-
termined by expanding the index set Λ using the uncertainty:

Λ ⊆
{
p ∈ K

∣∣∣∣h(x, ρp) ≤ max
ρp∈Ep

min
p∈K

h(x, ρp) + δ

}
. (12)

This can further be expanded to an easily calculable index
set Λ̂ ⊇ Λ by minimizing the left-hand-side of the inequality
condition and using the max-min inequality [22]:

Λ̂ =

{
p ∈ K

∣∣∣∣ min
ρp∈Ep

h(x, ρp) ≤ min
p∈K

max
ρp∈Ep

h(x, ρp) + δ

}
.

(13)

This expanded uncertain index set Λ̂ indicates which pixels
are safety critical and whose constraints must be enforced to
achieve safety given the pixelwise uncertainty sets Ep.

Measurement-Robust Control Barrier Functions (MR-
CBFs) as outlined in [23] are a general method for account-
ing for state uncertainty in CBFs. We can use this for each
pixel p ∈ Λ̂ to ensure that the safety constraint is satisfied
despite the uncertainty. The resulting constraint is:

Lfh(x, ρ̂p) + Lgh(x, ρ̂p)u

−
(
LLfh + Lγ◦hns

+ LLgh‖u‖2
)
εp

≥ −γ(hns(x)), ∀p ∈ Λ̂ (14)

where L is the Lipschitz constant of the subscript and

εp ≥ max
ρp∈Ep

‖ρp − ρ̂p‖2 (15)

is a bound on the uncertainty. Since Λ ⊆ Λ̂ and the MR-CBF
condition implies the CBF condition (5), satisfying (14) also
satisfies (10) providing safety of the system if σ = 1 and
Pθ = P .

IV. APPLICATION: OBSTACLE AVOIDANCE ON A
QUADRUPEDAL ROBOT

We evaluate our approach on a quadrupedal robotic plat-
form. With these experiments we aim to demonstrate: 1) Our
method is capable of keeping the system safe in a simple
do-not-collide task, and 2) Our method can adapt online to
measurement uncertainty in different environments without
ground-truth data.

A. Hardware System

For the hardware experiments we designed a custom
camera array with three equally spaced inexpensive CMOS,
global shutter, time-synchronized Arducam cameras. An
Nvidia Jetson Nano is used to capture, downsize, and
greyscale the stereo images. The images are then sent to
an external computer that receives the images and outputs
the filtered control input at a frequency of at least 10
Hz. The robot used in this experiment is a Unitree A1

quadrupedal robot that receives inputs of velocity and angle
rate, u =

[
v ω

]ᵀ
. A 1 kHz Inverse Dynamics Quadratic

Program (ID-QP) walking controller designed using the
concepts in [24], is used to track these inputs. Stereo pixel-
matching calculations were performed using Efficient LArge-
scale Stereo (ELAS) [15].

B. Learning Method and Model

The architecture of the model used to estimate Pθ is a
modified version of the Hierarchical Multi-Scale Attention
for Semantic Segmentation introduced in [25]; this model
is relatively lightweight, consisting of only 196 thousand
parameters (e.g., network weights). The robustness threshold
used was σ = 0.99 and the online learning rate was 0.001.
We pretrain the model until convergence on a dataset of 6000
stereo image triples collected by manually walking the robot
in a variety of environments.

C. Dynamics Model and Control

In the context of safety we consider a reduced order
model of the system dynamics given by the standard unicycle
model. The specific form of (2) for this system is:ẋẏ

θ̇


︸︷︷︸

ẋ

=

0
0
0


︸︷︷︸
f(x)

+

cos θ 0
sin θ 0

0 1


︸ ︷︷ ︸

g(x)

[
v
ω

]
︸︷︷︸
k(x)

(16)

A formal analysis of CBFs which utilize reduced-order
velocity input models is described in [26].

For this system we consider the pixelwise CBFs,

h(x, ρp) =
1

2

(∥∥∥∥[xy
]
−
[
ρp,x
ρp,y

]∥∥∥∥2

2

− c2
)

(17)

where ρp,x and ρp,y indicate the global real-world x and
y positions of pixel p. This function characterizes safety as
remaining a planar distance c > 0 from ρp. This can be
thought of as buffering surfaces in the environment by a
radius c.

D. Robustness to Uncertainty

To illustrate the efficacy of our method we use two
controllers in our experiments. A standard, unrobustified
controller:

kcbf = argmin
u∈R2

1

2
‖kdes(x)− u‖22 (18)

s.t. −
[
1 0 0

]ᵀ
r(p, d̂p)v︸ ︷︷ ︸

ḣ

≥ −γ(min
p∈K

h(x, ρ̂p)),∀p ∈ Λ

and a robustified controller:

k∗cbf = argmin
u∈R2

1

2
‖kdes(x)− u‖22 (19)

s.t. − v ≥
−γ(minp∈K h(x, ρ∗p))[

1 0 0
]ᵀ
r(p, d∗p)

, ∀p ∈ Λ̂.

where kdes : Rm → Rn is a desired controller, d∗ is the
maximum disparity for any ρp ∈ Ep, and ρ∗p is pixel location
associated with d∗p.



Fig. 4. Demonstration of our method in a variety of environments. From left to right the goal is to maintain a safe distance from (A) a tree, (B) a backpack,
(C) a blue box, and (D) a glass window. The distance to the barrier is measured and marked on the floor with a yellow tape for visualization purposes –
we emphasize this tape is not used for depth estimation. Notice that the barrier is assumed to be a sphere around an obstacle but in the case on the glass,
this sphere degenerates into a plane. The quadrupedal robot is given a desired control input of 0.2 m/s. In all cases, a naive barrier implementation that
simply takes the noisy measurements from a stereo vision system fails to keep the system safe. The robustified controller (19) with a pretrained model
consistently shows overly conservative behavior. Finally, with online learning, the robot converges to the barrier without exhibiting conservative behavior,
except for the glass environment where the robot is overly conservative and walks away from the barrier due to the perceived uncertainty. The (A-D)
corresponding plots below show the control input filtered by the barrier in each of the three robustification cases.

Although the MR-CBF-based condition (14) is a general
method for providing robustness, we opt for a simpler
condition that can be found using the system dynamics (16),
the chosen CBF (17), and Assumption 2. In particular these
imply that the denominator of (19) is positive and the right
side of the inequality is decreasing for d∗p ∈ Γ so remaining
safe with respect to the worst case closest pixel location
would ensure safety with respect to the true pixel location.

E. Experimental Results

The system was run in 4 different environments (see
Fig. 4). The CBF (17) was used with a safe radius of c = 0.33
m. The intended obstacle in the 4 different environments
were (A) a tree, (B) a backpack, (C) a blue box, (D) and a
glass window. A desired constant forward velocity v = 0.2
m/s was used in each experiment and the robot was started
approximately 1.3 m away from the obstacle. Since ground-
truth measurements were unavailable, we use a yellow line
on the ground to indicate the true location of the barrier.

For each environment three different tests were performed.
First, controller (18) was used. Since this did not consider
measurement uncertainty it failed to achieve safety in every
environment; in all experiments the stereo vision overesti-
mated the distance to objects at some point during the run
and the quadruped ran directly into the obstacles. Second,
the controller (19) was used with an error estimate computed
through a pretrained function Pθ; this succeeded in providing

safety, but was found to be overly conservative and did not
allow the quadruped to approach the obstacle as desired.
Third, the controller (19) was used with a Pθ that adapted
to the environment according to Algorithm 2. In this case,
safety of the system was generally maintained and over
time the system was able to approach the boundary of the
safe set. Even when small safety violations occurred, the
system eventually corrected and came to rest at a safe steady-
state. These results can be seen in Figure 4. A video of the
experiments can be found at [27].

V. CONCLUSION AND FUTURE WORK

We presented a framework for achieving safety of a stereo
vision-based system using self-supervised online uncertainty
estimation and robustified CBFs. Refining the uncertainty es-
timate model online was shown to achieve significantly better
performance. We validated our online learning approach
across several environments and successfully achieved robust
safety with minimal violations and conservatism.

Future work involves providing mathematical guarantees
for our method and extending this theory and application
to dynamic environments. We also note that our online
uncertainty estimation method, as outlined in Algorithm 2,
is a general method that can be coupled with other control
or state estimation techniques. Finally, implementing a high-
performance on-board version of our hardware system would
remove the need for a remote computer.
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